FASTBUS Smart Crate Controller
(FSCC)

Hardware Manual
Version PC4b

Abstract:
The FSCC is a simple FASTBUS readout controller designed for low occupancy front-end modules. It
performs most FASTBUS master operations, but is not intended to be a “general-purpose” FASTBUS
master. The module features a Motorola 68020 processor with a “Thin-wire” Ethernet port, allowing an
imbedded operating system to be installed. A FIFO memory buffers front-end data read in through
FASTBUS. The FSCC then adds a leading word count, and transmits the data out of a 32-bit port on the
FASTBUS Auxiliary connector. A “personality” card (which can contain active components) is installed in
the FASTBUS Auxiliary backplane, to convert the 32-bit parallel TTL data into any desired format for data
transmission. Information on current FSCC personality cards is included as an appendix of this document.
This document supersedes HN96, but does not replace it. HN96 applies to FSCC's of version PC4 and
earlier.

Principal Authors of Original Document:
Mark Bowden,
Gustavo Cancelo,
Richard Kwar ciany,
John Urish

PC4/PC4a/PC4b Revisions:
Richard Kwarciany

Contributing Authors:
Mark Bernett,
Robert Forster,
James Franzen,
Oscar Trevizo

November 1, 1995

HN 136

DISCLAIMER NOTICE

This material was prepared as a part of work sponsored by the United States
Department of Energy. The Department of Energy, Universities Research Association,
Inc., and their agents and employees, make no warranty, express or implied, and
assume no legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, nor represent that its use
would not infringe privately owned rights.

Table of Contents

1. GENERAL INFORMATION ...ttt sttt bbbt b e e bbbt et bk e e s bt sbese e bebeneasebenens 9
LI PURPOSE ..ottt e h bbb s s h e S h e e e S ae SR e e s b e e e b e oAb e e b e e R e s e s R e R e R n e aa s e e r e re s 9
1.2 STANDARD BUS CONNECTIONS (FASTBUS) ..ottt bbb 10
L3 PACKAGING. ... ettt sttt ettt et bttt s e b e h e R Rt b e e e s e R AR £ R e AR e e R e e R e e R s e R e R e Rt SRR e R R e e e R E e R R e Rt n e e s 10
1.3.1 Module Pinout (Backplane CONNECIONS)ceiviriererieeererieneetesieseete sttt sbe e e b e e b sre e b mane e eresneennens 10
RS 2 oo =T TSP 11
1.4 POWER REQUIREMENTStutteuttteutsestesesessesessssasesessesessssasessssastssssansssssantssesansssssentssesesessesentssesansssesentssesensssesensssans 16
2. THEORY OF OPERATION AND OPERATING MODES.........cccosiitrsttnneeresiee e 17
2.1 BASICOPERATION. ...ttt sttt st sh st h bbb d b bbb b e e e e b e b s b e b e s b s bbb e b s e s bbb e 17
2.2 ON-BOARD PROCESSORuiitiiiiiiiiiitisie ittt st bbb bbb bbb e bbb 19
2.2.1 Control and SLAtUS REJISLEN'Suevueiieiisieieeteeeeseesesteste s e e s e esee e seestesseeseeseesenseseestesaessemeensesseseessesseesesnsenees 20
2.2.2 ETTON RESPONSESeiiuveeiteteieesteeeteesbeastee s beesbee s beesbeesab e e sabeesa b e e sabeesabe e e abeesabe e e aseesabebe e sabeenabeesabeenabeesnbeenaneen 20
R B 410 AU o] £ T PSPPSRI 21
3. COMMUNICATION INTERFACES.......c.o oottt 23
3. L FASTBUS INTERFACE (FPORT) ...eiutitiitiietirtiietestee ettt ettt sb et b bbbt b bbbt nb bt b e nees 23
3.1.1 FASTBUS CONrOler OPEIraLIONc.eiviieeiriiieierieeetesieieee sttt sttt s et s s ss s sn s b s sbe e e sns 27
.12 FASTBUS ArDIEALION .. .cueiueeeeiee ettt sttt st be s aesbesaees e e e e s e e seesbesaeeseenee e e enseseeseesbesaeeseeneenean 27
3. L3 FASTBUSRESEL BUS (RB) ...cvieeiiitiieiiitirieitst ettt sttt ss e eb et b st b st e et n e nb et nn 27
3.1.4 FASTBUS SaVe MOUE OPEIALIONoivieeririiieierieietesieeetesse et ssee et ss st es s s s s s e s sse et s s e snesnenesnas 27
3. L5 List MOOE FASTBUS OPEIALIONccveviiirtirieiietesieieste sttt sttt ss e bt s e eb e ebesa e se s e b s e b nnenenns 28
3.1.6 Data Transfer Description and Transfer RALES ..o 31
3.1.7 Internal Control and SAIUS REJISIEN'Soouiicuiiiieiertie ettt b et sn e 32
.18 ENTOr RESPONSEScuveeireitieresi ettt r st es e e e e et r s b e st e s e e e b se e e R e s b e e bt e e s e e e r e sebe e b e e e e s e n e sr e r e s beere e e enn s 32
G 1 TN = PSP PP PROR 32
BN I (1= T 1= = 1 T PSRRI 32
3.2.2 Ethernet Controller INTEITACEccuciiireiiieer et bbb 33
2.3 THMING DIBGIAIMIS.vetiueitiiteeetert ettt ettt b et b e eb e e et e bt s e e e e bt e e e e bt e R e s eb e s b et s e st e bt s e bbbt b e senbennenenn 34
3.3 DESCRIPTION AND OPERATION OFOUTPUT PORT (OPORT)cctiiitirieiirieeete sttt seeve e seene s 37
3.3.1 OPORT Controller Operating MOGEScceireuirieirierieiesieesie sttt eb et be e sr e ebe e bbb seenesreneas 38
3.3.2 PC4b OPORT State Maching PSEUAO LiStiNGcoviirieiieiierce ettt 42
3.3.3 OPORT iNPUL/OULPUL SIONAISueevieeiieteeetesee ettt ettt sttt skt e et b e b s et eb e e b e sr et ebeneene s 43
3.3.4 OPORT CONIOlHEr INEEITACEecuiieeieetireetereei ettt et et b e s b s et bese b e e e ebeneere s 44
3.3.5 OPORT OULPUL WAVEFOITIS ...ttt sttt ettt e eb e et b et se bt b et e b e e b e b e e eneneene s 46
3.3.6 OPORT AUXIliary Parall&] POITcoiiiiiietiiieesieseeie sttt b e sn bbb 51
3.3.7 Header and Event Counter Control System (H& C CONLroller)coveeeercirerene e 52
3.3.7.1 Header and Counter (H& C)

3.3.7.2 System Interface.......c.cccvveevrecrennn.
3.3.7.3 H& C Register Definitions
3.3.7.3.1 GWC Preload RegiSter / GWEC REGISIENcoveuierieerieieesieeesie ettt s nee s
33,73 2 HEAUEN REGISIEN ...ttt E e e R e R et E R e R Rt R R e Rt et ne e
3.3.7.3.3 Control Register
3B.3.7.3.4 SEAIUS REJISLEe.veereeiereeieeert ettt bt h et E e e b et e bR Rt e es Sh e e e e s e e b et R bt e R st e Rt e r e
3.3.8 OPORT Auxiliary Connector INTEITACEciiiiiireirieieet ettt 55
3.4 COMMUNICATION PROTOCOLS.eeieeiiie et cette e ettt ettt e e ettt e e et e e e e eta e e e e aabaeeeesaeeesbseeeaasbeeesansseeesbseaeanbesesasnenas 56

4. APPENDIX A - FPORT CONTROLLER INSTRUCTION SET ..ottt evees s sve s s savee e 57
4.1 FPORT CONTROLLERNORMAL MODE INSTRUCTION SET ..ciiiiiiiitttiieieeeieiiirrreeesesessssssseesssssssssssseesesssssssssssssesssenns 58

4.1.1 BUS ARBITRATE ...ttt h bbbt se e r e s b eh s e e n e r e e e r e sn e b e e e 58

A 1.2 BUS RELEASE ...ttt sttt st ettt e et e st e et e e s st e e e ate e sa b e e e aseesa b e e e aseesnbe e st e aaeeeenaeesnteenneeeaneeennes 59
4.1.3 ADDRESS DATA GEOGRAPHICALooiitieiiet ettt ste e stee s ste et e s tae e saae e stae e s aae s ssaeesnne s ssaeessnsesnaeennnas 60
4.1.4 ADDRESS CSR GEOGRAPHICAL ...ttt ittt ettt tee et e tae s stee s sta e sse e e baeesaesasbaeesaaesssaeenaaeessaeensteesnaeesneas 61
4.1.5 ADDRESS DATA LOGICAL ..ocutiiitiiecie e sttt ste sttt ste e sttt ste e stae e ssaeestaeasseeessaeassseessseesssaessseesnsesssseesssessssesssees 62
4.1.6 ADDRESS CSR LOGICAL ...ueiiiteiiitit ettt e steeeste et e stesstae e sseaestae e ssaeestesessaeanseeessaesssaeessseeaseeessaesesnseesseeesnseesses 63
4.1.7 ADDRESS DATA BROADCAST ...ttt ittt stee st e s e s st e st esteesateassee s beassessabeeaseesnbesaseesntesnasseeaneeesses 64
4.1.8 ADDRESS CSR BROADCASTooitieiiteiiee sttt e s te et te e ste e sate e ste e sateassseesateassseesabeaanseesabeesnseesntseesseeeaneeesseas 65
4. 1.9 ADDRESS RELEASEooo oottt sttt e s te e st e e s e e e s e e sa b e e eat e e sa e e e ease e sabeaanaeeseeneeesneeesneeeaneeenneas 66
4.1.10 DATA PROCESSOR RANDOM _READcccciiiiiiiieeiieeste s st e sie s steesste s steeste s snteasse s snteesnsessnteesnsessnmmessnas 67
4.1.11 DATA PROCESSOR RANDOM WRITEccttiiieiiie e stes sttt sttt s st st esbe s st esnte e st e snne e s s 68
4.1.12 DATA PROCESSOR SEC ADDRESS READccctiiiieeiite sttt ste et ste e site e sae e saae e sne e snae s snneesnaessnne e 69
4.1.13 DATA PROCESSOR SEC ADDRESS WRITEcccctiiiiie ittt ettt ssne e st sne e snte e snee s 70
4.1.14 DATA PROCESSOR BLOCK_TRANSFER READccceiiiiiiiiecitie ettt sites s steeesvee s es e s st sessessbasannee e 71
4.1.15 DATA PROCESSOR BLOCK_TRANSFER WRITE........ccciiiiitiiieciee ettt esiee st sies e stae e s staeennna e 73
4.1.16 DATA PROCESSOR BLOCK_TRANSFER TERMINATE ..ottt ees ettt snee 75
4.1.17 DATA FIFO BLOCK TRANSFER READcooiiiiiii ettt sttt stee et saee et s ssae et s snaestae e sneeenas s s s 76
4.1.18 DATA FIFO _PIPELINED _READ _100......cciiitiiiieiitieisieesiessseeeiesssteestesssseesssesssseessessssesssessssesssmsnsessses 78
4.1.19 DATA FIFO_PIPELINED _READ _200......ccccittiiieiitieeieeeiesesesstesasseestessssessssesassessssessssessssesssssssssmsnsesssees 79
4.1.20 DATA FIFO_PIPELINED _READ 400ccccitiiieiiieeieeeiessseeetesssteesbeessseessesasseessessssasssessssesssmsnsesssns 80
4.1.21 SEQUENGCER INULL ...ttt sttt te e eaae e st e e eate e snteeeateesnbeaenaeesanaeesneeennaeeaneeeneis 81
4.1.22 LOCAL_COUNTER _LOADotiiititeiie ettt esee ettt ste et ste e et e saae et s e ssee e ta e e ssaeanbaeeasaeessaeeasaeensnseesnaeeanseennnes 82
4.1.23 LOCAL_COUNTER READooiiitiieiieiitet e see sttt see st staeestae s aae e tas e sseeastaeessaeanbeeeaseeesseeeasaeensnseesseeeanseensees 83
A L2A FIFO WRITE ... ettt sttt et e et e st e e ase e aa b e e aase e aa b e e e aseesabeeeateesnbeeteeaneeennaeeaneeenseeeaneeeneis 84
o S = | I @ T A £ USSR 85
4.1.26 END_OF _EVENT REXMIT oottt ettt ettt te st e st e et e e saae e snte e anaeesnaeesntesssneeennneeaneeennnes 86
o Ay I AN Y AN AN N = SRS 87
o s S I AN R Y AN AN 10 I = U TSRS 88
4.2 FPORT CONTROLLERLIST MODE INSTRUCTION SET ..ueiiiiiiieeiitiiee ettt e eeteeeeeitteesesaseeesesseeessteeessassesesassesessnsesesanes 92
4,21 BUS ARBITRATE ...ttt sttt ettt e et e et e e te e e ba e e ae e e ke e e be e e beeeaseeeabee e sasseesaeeesateenneeeaneeeneis 92
422 BUS RELEASEooo ittt sttt sttt e st e et e st e et e e s st e e e se e aa b e e e ase e sa b e e e ateesnbe e et e aaeeesbeeesneeenneeeaneeenneis 93
4.2.3 ADDRESS DATA GEOGRAPHICALooiitiecet sttt ettt ste st e s sae et tae e saae st ae e s aae s ssaeesaae e ssaeesnnsesnaeensnas 94
4.2.4 ADDRESS CSR GEOGRAPHICAL ...ttt ittt ettt ettt st e st e se s e baessaeeesbaeesaaesssaeanneeessaeesressneeennnas 95
4.2.5 ADDRESS DATA LOGICAL ..octtiiitieecte ettt see sttt s e e stte e sste e stae e sate e stae e ssaeessseassaeessseessseesnseesnaessseeessseesnsessses 96
4.2.6 ADDRESS CSR LOGICAL ...ueiiitieitit ettt ettt esee ettt stesstee e ssaeesbae e ssaeestasesseeeseeessaeasseeesseeesseeessaesesnseesssessnseesses 97
4.2.7 ADDRESS DATA BROADCAST ...ttt itie st stee st e st s st e s e e s te e sateaasee s bessseesateeanseesnbeesseesntemnaseeeanseensees 98
4.2.8 ADDRESS CSR BROADCASTooiiiecite ittt ste e st e st ste e sate e ste e sate e ssteessteesaaeesabeaanseesabeesnseesntseesneeeaneeenneas 99
4.2.9 ADDRESS RELEASEooooiii ittt sttt sttt e et e st et e e s ae e e be e e e sae e sba e e aaeeebeeesentaeeneeentaeannnane 100
4.2.10 DATA RANDOIM _READooiciiiiiieiitie e siee st et este s s teesateasteessteasteessteeasseesateesnseessseasnsessesesssasansnnanes 101
4,211 DATA RANDOM WRITEcciiiititiitieiieeeiee st s etee st s s stee e s aaeesabesaseesabesaseesnbesanseesnseasnsessesesssasansnnanss 102
4.2.12 DATA _SECONDARY_ADDRESS READ ..ottt ittt s e sste e saeessteesteessaessaeesnseesnseesssessmanes 103
4.2.13 DATA _SECONDARY _ADDRESS WRITEcoiiiiiiieiiie sttt seessiee e s sresssbesste e sstessaeesntessneesnsessnmn e 104
4.2.14 DATA BLOCK _TRANSFER WRITE ...ttt ittt see et see et srae et e ssaesba e s ssaeenas e snaeesmeeneeanes 105
4.2.15 DATA BLOCK _TRANSFER TERMINATE ...ttt sttt s et st esne e s e snmnne 107
4.2.16 DATA BLOCK _TRANSFER READccetiitii ittt stee et e stee et e s et e s stassbe s s steesnbessstaesnsessnsessnsmeensnnanes 108
4.2.17 DATA _PIPELINED_READ _100.....cccctiiiieiitieiieeeieesiteeeiesssteestessseessesssessssesssessssessnsessssessnsmmensessnsessnns 110
4.2.18 DATA PIPELINED_READ _200.....cccctiiiteiiteeiieeeiessiteeetessssesssesssesssessnsessssesssessssessnsessssessnsmensessssessns 111
4.2.19 DATA PIPELINED_READ 400ccctiiiieiitie e eitessiteestesssteessessteessesssessnsesssessssessnsessssessnsmmensessnsessnns 112
4.2.20 DATA _RANDOM_READ LEADING WORD_COUNTooiiiiiiitiecies e cieeesieestessstee s s ssree e ennee s 113
4.2.21 DATA BLOCK _TRANSFER READ _TO LOCAL_COUNTER......c.ccotiieeetie e ciee et e et 114
4.2.22 TRIGGER HOLDoiiiiie ittt sttt st st e st e et e e te e eab e e e teeanbeeanteesnbesteenbaeeneeentaesnnnane 116
4.2.23 INSTRUCTION_LIST RE-EXECUTE ...ttt sttt te et ste et sae e s ae e snae e snne e s enne e 117
4.2.24 GENERATE_FPCREQ (IRQ) ... et tttrterteeteeteeeeie e ettt sttt eseesee e seesbesbesaesseeneensessessesaeseessesnemraessesneensnnsans 118
4.2.25 POLL HALT REQUESTooiiiiiiiieeiteesieseiee st e st e st s s te e ste s saeesnte e snseesnteeanseesnbeeanseesnsessnseetensesensassnsnnans 119

4226 DELAYZ...... oottt e R e R R R R Rt r e R R R e R e n e 120

4.2.27 DELAYIL0.....c ettt h et e R R R R R R R R e Rt et n e R r e nn e ar e anenen 121

4. 2,28 DELAYL00 ... ctiiieeiiee ittt esee e st e stee e st e e stee e s teeesseeestaeaseeesbaeasaeesbeeeseeeteeeaee e beeeanee e beteeeneeebeeennee e raeenrne et 122
4.2.29 SEQUENCER NULL w....cvovicvceeeceetesesetesees s tesesssesess s esssenesssesesssesesssessssssssssasssssasesssassssassssssssnsssssanens 123
A.2.30 BULB _TEST ..ottt s e sttt sae e st e e aae e st te e eaa e e saee e ase e e sheeeaaeeesaee e seeessbeteeaaneeentaeenneeensaeannnane 124
4.2.31L LOCAL_COUNTER _LOADoiiitie ettt esiee st eestee st st e s e s e se s st e asessnteeaaeesnteeasesanteeeseesntresensasansnnsne 125
4.2.32 LOCAL_COUNTER READootititiitiecititeites st estee st s stes st e aseessteeasessnteeasesantesaseesntesasessnsesssesensensnes 126
A.2.33 FIFO WRITE DATA .ottt ettt et s e st s e e st e e s a e e s st e e sat e e saeeeaste e asaeeasteesateesneeasentaeeneeentaeensnnane 127
4,238 END_OF _EVENT ..oovoiieeeeeteseieteseesseseee s sessessessen s ses s ses s s s ssssn s s s sssnsss s snssssnssssssssassassassassssssnsns 128
4.2.35 TRIGGER HOLD WITH_HALT REQUESTouveieeeeceeseeetesesstesssseesssasams 129

5. APPENDIX B - FSCC PART S LIST .ot ciciceeiseseette et e e e e te st eae e sae e s tesae e saestestesnestestesne st stesnensessesenns 132
6. APPENDIX C - FSCC DOCUMENTATION ..ottt ee sttt sae et ste e ae e saaesbe e snteesnneennae e enreas 136
7. APPENDIX D - FSCC EPROM LABELINGccectiiie ettt se e et sa e e stesae e seesne e sn e eneas 139
8. APPENDIX E - FSCC PC4 ASSEMBLY DRAWINGoiiiiiiiie sttt see st sae et snae s snae s 141
9. APPENDIX F- FSCC VERSION HISTORYooiiiiiicictireeestee e tee e e e sessae e ss e e saesse e ssesae e snessestessneenens 143
LS00 51 S 144
LS O N 0 . 5 T 144
LS 0 T8 O 144
LS G 50 0 = V= 144
9.3.2 Replacement of ObSOlete COMPONENESccveierieriere e sese et e e e ste e e s sre s e eseesaesaestesresresseenemesaeeneeneeneenes 144
9.3.3 MEMOTY EXPANSION.....ccuveieieiesiesiesieeseeeestes e stestesaeesesseesseseessestesseatesaeessessessenseseeatesseesessseensesteseessesseesenseensnnen 144
9.3.3.1 ProcesSor RAM EXPANSIONccueueuiiieiteitisieseeiestetestessessessesessessessassessesssssssessessensessessssessesmsessessessessessssessessensensesssses 144
9.3.3.2 Processor EPROM EXPBNSION........cueuiriiuiirieirieesesteesiee st et se sttt ss s et st st s st et bese st ebenesbenestesessesenessens 145
9.3.3.3 Processor NVRAM EXPANSION.......cc.coueiiiiieiesieieeatestestessesteessessestessessessssessessessessessessssessssissssessessessssessessensessessases 145
LR B E= = (@ B V[T [or= 1 o] R 145
9.3.5 Data FIFO MOifiCALIONS.......cccueieirieiisiesieceeesees ettt ae s te e st r e e e e e e e e e seestessreseeseestesneenenneeneenes 146
9.3.6 Tranzorb and FUSING ChanNQESuiieiiiieiesese sttt e eee e te s sre e se e e e stestesbesresre s e enmestesresneeneeneeneenes 146

LS G T o =< 147
S 7 S 148
LS @ = V= S 148
9.4.2 Front Panel Trigger PoOrt ENNANCEMENEScccoiiiiieciseeeee sttt eee st enae e e enaenes 148
9.4.3 Suppressing Zero Word EVENES (SZE)ccvvveeeeieieie st s se st ee e siesae s et tesseesessaesae e sae st st ene e enaenes 148
9.4.4 Write ProteCt NON-VOIatil@ RAM ..ottt st st sa e e e e e sr e s re e ene e enaenes 148
9.4.5 FPORT Microcode ENNANCEMENESccuiiiieiisiseceeiestes ettt sae st se e e s e e sae e enee e enaenes 148
9.4.6 Add Control FIFO STAtUS Bit........cciiieieeeieeresese st steseeeeeeste e sre e s sre e enaesaesae e sresressmestesrestesaeeneenesnennes 149
9.4.7 Modify OPORT Controller to Comply with DART ProtoColccceeerieeierie e seseseeeeseese e 149
9.4.8 EXPaNd CPU MEMOTY IMBDecveeueeieiesiisiesiestesseeeeseessestesaestessessessassssssessessesssssessessessssssensesssmmsessessessesnsssnnes 150

LS ST 7 - S 151
LS TN 0 V= S 151
9.5.2 DART Interface Secification ChanQgES..........ccceviieieierieieeie e st e e st e s e e e e enaenes 151
9.5.2.1 Data Link Changes (OPORT)ccucciciiiiiiiiesieieeietestesteste e e e e stesaessesae e esesseebessessesseseesestesbasssessesessenssseabesrensenseneans 151
9.5.2.2 PERMIT Link Changes (PERMIN/PERMOUT)ccciiiiiiiiieiieieeete sttt sttt sa et sne s ssesbesnesnens 152
9.5.2.3 Trigger Link Changes (Trigger Strobe, and Trigger ID DitS).......cccvieieiiiriciieiecicesrees e et 152
9.5.3 Data Flow Control ENNANCEMENEScciiiiiiecieeee ettt e et smr st e e e ne e enaenes 152

LS BT T o = 152
10. APPENDIX G - FSCC AUXILIARY OUTPUT PORT INTERFACE CARDS. ... 154
10.1 FSCC- DARTAC INTERFACE ... ettt ettt ettt s te et e s ae e s s e s aa e s be e sateesse e e baesnse eessaeanseesnseesns 155
10.1.1 GENERAL INFORMATIONcctiiiiieiiteiteeesiee st e stessteeesteessteesateessaessbessnseessaeessaeasessssessssesssens esnsessnsesssenn 156
10.1.1.1 BOBIA PUMPOSEcuereiireetieetees sttt es et b e s et b st e b e R et s e st s bt e E et e R et e e eb e e e b e e Rt ne b e nen e e nn s 156

T ot] o OSSPSR 156

JO. 112 L PRYSICAl SIZE....oeceiuiieeiieiteiteeete ettt b et e bt e et e bR b £ s b e e s eb e e R e st e e r et e b e e e b e e 156

10.1.1.3 POWES REGUITEIMIENTS........cueieeiireteeseesessesesestee s ssesese s s st se s e s es e sees e s e nees e s e st se b e e R e st ne e b e e e e e b e e s e e s e nnenenenbeneanene s 156
10.1.1.4 C0O0liNG REGQUITEIMENTScoveuereiereeiiesrec sttt e s e st s b e b s s s ne b e e s et s e e b e e e e s e nnenenenr e e n st s 157
FO. 1,15 TCSUSEL ...ttt e E e Rt e R e R e Rt R b e Rt e e R st e b e e e R e e Rt e b ren e n e
10.1.1.6 Pin Configurations
10.1.1.6.1 FASTBUS 195 Pin 3 row Backplane CONNECLONeoreeeirrieinieinieiesesesenee e 157
10.1.1.6.2 50 PiN CONNECLONcveuireeiieereeereseseesese st sse e ss s e sse e st se s e e s s esessesesenesae s esene b e s e asene st ae e b e e e b e st nn b e e enenenrenenas 157
10.1.1.6.3 VDAS 34 PiN CONMNECIONoieireiireetiresesesiesessesese s st s s st e s e s s s s ne b e b et sns s ne b e e nne e n s nenre e nnen 158
10.1.2 THEORY OF OPERATION AND OPERATING MODES.........cccoi ittt 159
10.1.2.1 BASIC OPEIBLIONouvveuieeieretereeieesrese et se st s et se et e s e e se st s st e b e e s s e st s e e b e e e e e e e R e st ne b e e e R e s e neeb e s e e b e e e R et ne b e nen e nr s

10.1.2.1.1 DIP Switch Settings
10.1.2.1.2 Jumper Settings
10.1.2.1.3 PAL Source Listing

10.2 FSCC-VDASAC INTERFACE (E791)eeieieiiiie ettt sttt sttt eeeeseebesamnse s e eneeneens 162
10.2.1 1.GENERAL INFORMATIONcoutiitiieitestestesteeeeseesteseeste e saesseeeessessestessessesseeseansessesseseessessesnmessessesseensenes 163
10.2.1.1 Board Purpose
10.2.1.2 Application..............
10.2.1.3 PACKAOING. -ttt b et b e s bt e et R e b n et r e
10.2.1.3. L PhYSICEl SIZE.....oeieiireeiiteee ettt er et p et nas
10.2.1.4 POWEr REQUITEIMENTS.ceeitiieireiireereessesessese st se e s e se e s e s e s en e e s e n e ne b e nen e ee
10.2.1.5 Co0ling REQUITEMENLSc.coviriireeierieereeieesree s
10.2.1.6 Integrated Circuits Used
10.2.1.7 Pin CONfIQUIBLIONS. .. .cviuiieiiieireiireetese ettt se b st e b se e s e R st ne b e e e R et ne bt et e e eb e ne b e e Rt nn b e nene e nn e
10.2.1.7.1 FASTBUS 195 Pin 3 row Backplane Connector
10.2.1.7.2 VDAS B4 Pin CONNECLOLviiuieieiteeiesteetesteseestesseestesteeseessessestesseessesssessesseesesssessessesssseansassessesssesssensessennsens
10.2.1.7.3 VDAS 10 Pin CONNECLOLviiuieieitieiesteeeesteseestesteestesteeeesseesestesseesseaseessesseesesssensessessaseansassesseessesnsensessennsens
10.2.2 THEORY OF OPERATION AND OPERATING MODES.........cccoi it 166
10.2.2.1 BASIC OPEIBLIONcuvveuieeiiretesee ettt ettt s e s e e s s b e e b e e s s e st e e bt e e b e e e R e st ne b e e e R e s e e e eb e st e b e e R et nneE e ren e r e 167
10.2.2.2 TIMING DIBOIEIM ...ttt s e b e b e R st e b e e R et e e e R et e R e st e e R et e e e e e n et ne et e e nn et nr e 167
O B o A 4 1S Y I 1 PR 168
Tableof Figures
FIGUREL FSCC BLOCK DIAGRAM. ..ottt ettt et b e bbb bbb 9
FIGUREZ FSCC FRONT PANEL ...ocutiitiiictee sttt st 11
FIGURE3 FSCC FUNCTIONAL BLOCK DIAGRAM......coititiiiintctisis ettt st st 17
FIGURE4 ETHERNET INTERFACE BLOCK DIAGRAM ...ciiitiiiitiiiititerite sttt sttt sttt be e st s ne e st e sneesteesneennee 33
FIGURES ETHERNET CONTROLLER STATE DIAGRAMtttiititiittt ettt ssteeestessteesssesssbessssessbessssessnsessssesssessnsessnsessnsessnne 34
FIGUREG ETHERNET CONTROLLERREAD CYCLE....iitiiitiiiitieiiteeeiteessieeesieesteessaeesbessssessbessssessbesssesssessnsesssessnsessnne 35
FIGURE7 ETHERNET CONTROLLERWRITE CY CLE ...uutiiititiitieiitet ettt ssiesesiessbeesssesssbesssessbessssesssessnsesssessnsessnsessnsessnne 36
FIGURE8 OUTPUT PORT (OPORT) BLOCK DIAGRAM......cctiietieeeiestestestesseeseseessessessessessessessssssessessessessessessessessssees 40
FIGURE9 OUTPUT PORT (OPORT) STATE MACHINE DIAGRAM.......ciititiitisteeteeeeiesiestes e saesresseesaessessesteseessessessesssenees 41
FIGURE10 OUTPUT PORT TOKEN_MIDDLEANALYZERPICTUREccittiiitiiiiiierieessteessseessiesssieesstessssessnsessnseesnseesnseesnee 46
FIGURE11 OUTPUT PORT TOKEN_FIRST ANALYZERPICTUREutiiitiiiitii et esieessteesstesssies et s sstesssseesbeesnseesseesnseennee 47
FIGURE12 OUTPUT PORT TOKEN_LAST ANALYZERPICTURE......c.cttititiitiiiiieesitessteeesiesssbessssessstessssessbessnseesnseesnseesnee 438
FIGURE13 OUTPUT PORT TOKEN_ONLY ANALYZER PICTURE.....c.cttitttiititiiieesieessteesssessstesessessssessssessnsessnsessnsessnsessnee 49
FIGURE14 OUTPUT PORT 6.67 MHZ ANALYZER PICTUREcctttiiiiiititesieesite st sste st esbes i st ssne s st esnseesbaesnee e 50
FIGURE15 OUTPUT PORT 5.0 MHZ ANALYZER PICTUREciiittiiitttiitieesieesstesssieessteesssessbessssessssessssessnsessnsessnsessnsessnee 51
FIGURE16 HEADER AND COUNTER BLOCK DIAGRAMicitiiiitiietie ittt esieesitesieestee st e s bee b e st ssse s st s snseesbeesneesnee 52
FIGURE17 HEADER AND COUNTER STATE MACHINE DIAGRAMoiiitiiiitiiiiieenieessieessiesssiesesieesstesssseesnbeesnseesseesnseesnee 53
FIGURE 18 FSCC COMPONENT VIEW.....utiiitiiiitesiieeetesstesssesssesssesstesssessssessssessssesssessnsesssessnsessnsesssessnsessnsessssenn 142
FIGURE19 DART DAQ SYSTEM BLOCK DIAGRAM (PARTIAL)..cuceitertestestesieesesieessesseseessessessesseessessessessesssssessesesseens 156
FIGURE20 VDASDAQ SYSTEM BLOCK DIAGRAM (PARTIAL) ..cuveiteitertestesieeseseesseseessessessessesseessessessessesssssessssssssenns 163
FIGURE21 FSCC-VDASAC BLOCK DIAGRAM.....cccttiiittteittesteesstessstessssessteessessbesssesssesssessnsessssesssessssessnsessssenss 166

FIGURE22 FSCC-VDASAC TIMING DIAGRAMctttiiiieiiiiiitteetee s seiiatreeeeessesssabsseeesssesssstasseesssesssstssssessseisssrsssseses 167

TABLEL1 FRONT PANEL OUTPUT PORT PINOUT ...ciiiiiiie st e sieee sttt e e eitee e s st e e s st e e s esntee e ssnneeeesntaeessnseeesnnnneesansenenannes 12
TABLE2 FRONT PANEL INPUT PORT PINOUT.....cciiiiitiiieciiee e e sieee e sitteesesstee e s saneee s snteeesessseeesssseeessnsesessnnsesesnssneesansenennnnes 13
TABLE3 FRONT PANEL SERIAL PORT CONNECTOR PINOUTS ...ceiiiitiieeeiieressreeeesteeesesseeeesssneeessseessssssesesssssessansesssannes 14
TABLE4 AUXILIARY PORT CONNECTOR PINOUT......uttieiiieieiiieeeesitieeeessteeessseesssseeesessseeesssssesssnssssssnssesesnsssessansenesannes 15
TABLES POWER SUPPLY REQUIREMENTS......ciitittttteteeeiiiituteeeeessiasissssresesssesssstsssesssseisssssssssssssismssssessesssasssssssssesssanans 16
TABLEG PROCESSOR ADDRESSIMAP ...coiitiie ittt e sttt e e sttt e s sttt e e s tee e e e ate e e s sasae e e snteeeeesnteeessseeeeanteeeeannseeesannneesansenenanes 19
TABLE7 HARDWARE INTERRUPTS......cetiiititeiiitteeeiiteeeeassteeesasssesesassessaastesesasssssssesesaassesesassssessnsesessnsesesasssessansenssannes 21
TABLE8 PARALLEL PORT BIT DEFINITIONS.uttiiiititteeiieteesiteeeesiteeeeessteeessseesesteeessssseeesasssesssnsesesssssesesassessansenssannes 24
TABLE9 FPORT SEQUENCER OUTPUT BITS....cictttiiiiiieiiiititiiee e e seiiiatreeees s s essaabseeessssessssbssssesssssasssssssesesssesssssssssesssesnns 25
TABLE10 NORMAL MODE FASTBUS INSTRUCTIONS......ceiiiitteeeiitreeeesreressseesesnseeesasssssesssssesssnsesessnssesesasssessansesesannes 26
TABLE11l NORMAL MODE FASTBUS SLAVE INSTRUCTIONS.....ccuttteeitteeesrreeeesteeeessssneesssssesssnsssssssssesesssssessansessssnnes 26
TABLE12 LISTMODE FASTBUS INSTRUCTIONS......ctiiiittteiiiteeeeiitteeeeasteressseesssseessaassssesssssesssnsesessnssesesasssessansessssnnes 29
TABLE13 OPORT CONTROLLEROPERATING MODES......ccciiiiiieiitieeeeiteeesieeeeestteesesaseeessnneeessnteeessnssesesnssnesssnsenesannes 38
TABLE14 OPORT CPU REGISTER DEFINITIONS......cetiiiittteiiieeeeiiteeeeeareressissesessseeesassssesssssesssnsssessnssesssasssesssnsessssnnes 44
TABLE15 OPORT STATUSCODE DEFINITIONS. ...cctttteiitteessteeeeiiteeeeeasseresssssessssseessesssssesssssssssnsssessnssesesasssesssnsesssannes 45
TABLE16 OPORT AUXILIARY PARALLEL PORT BIT DEFINITIONS...cccccttteiiteeeeiteeeeesueeeessneesssnseeesssssesesnssesssnsenssannes 51
TABLE17 HEADER AND COUNTER CONTROL SIGNAL TRUTH TABLE. .. .ottt iiciieecitieeecsiee e ereee e e stee e e ssnee e s snnnee e s snaeeeennes 53
TABLE18 HEADER AND COUNTER REGISTERIMIAPciiiitiieicteee e stiee e ettt e s sanee e e stteeeenntaeessanneeesntaeesennteeesnnnnessansenesannes 54
TABLE19 HEADER AND COUNTER MODE DEFINITIONS.cciicteeeiitteeeeiteressiseesesseeesssssssesssssesssnsesessnssesessssessansessssnnes 55
TABLE20 FSCC RAM CONFIGURATIONOPTIONS.cceiitiieeeueeresiueeeeateressssseeesssseessssesssssssesssnsssesssssessssssesssnsnesans 144
TABLE21 FSCC-DART AC PARTS LIST ..ttt iiiiii e iitieee e st s sttt e e sttt e e s st e e e s see e e s aae e s e astee e e eaneeeesnaeeeeanseeeeaneeeesnsnnenans 160

TABLE22 FSCC-VDASAC OUTPUT PORT AUXILIARY BOARD PARTS LIST ..uttiiiiiiiiciitiiiieeee ettt eesinrae e e 168

Blank

FSCC Hardware Manual Version PC4b

1. General Information

Front Panel Front Panel ~Ethernet Host Terminal §
» 2
Output Input ¢ S; mg
A Ethernet 589450
4 4 Port b E:E 8 % g
2880 =2
Controller 7 Non Volatile
[1 P [
Pgroarlllel Pgroarlllel Dual-port S;gir?l Interrupt Real Time Program Program Processor
Memory Controller Clock RAM EPROM (MC 68020)
(FCSEL) (FSSEL) Controller
8“ 8“ 32“ 8“ 8“ 8“ 32“ 32“ 32“
Y Y Y Y Y Y \ i Y
32 1 32“ 32 Address/Data 16 Ly 8 L 8 L{
\)] \) \))
FASTBUS Local ; Global Word Parallel Parallel
‘ Port Tranceiver Word Prglc';scs)sor Fl_l;:sct) Counter & Port Port
‘ Controller Counter Header Latch (OPORTS) (PARLLS)
A
18 8
¥ 32 12 32 32
\ \
32 JF IOD Bus
A))
Pipeline Data Control Ogé;:lut
Latch FIFO FIFO Controller
A A
)
‘ ML s ECL FSCC Block Diagram Pipeline
atc
/
Y | .
Auxiliary Card
| FASTBUS (level conversion

Figurel FSCC Block Diagram

1.1 Purpose

The FSCC was designed as a simple readout controller for low occupancy front-end modules. It performs most
basic FASTBUS operations but was not intended to be a "general-purpose" FASTBUS master.

A Motorola 68020 processor is used to control operation of the module and any features which are not time-critical
have been allocated to software.

The original design goals were as follows;

a) a typical readout time of 1 psec for a single slave module with a few words of data, including primary
address and address release,

b) ability to execute most standard FASTBUS Master operations, and

C) design simplicity such that a working prototype module could be assembled in 6-9 months.

Novmber 1, 1995 9

FSCC Hardware Manual Version PC4b

1.2 Standard Bus Connections (FASTBUS)
The FSCC operates as a master on both the FASTBUS crate segment port and the (non-FASTBUS) auxiliary port.

It also supports FASTBUS slave operations on the crate segment, but at a very reduced rate. All slave operations
are afunction of software.

1.3 Packaging
The FSCC is a single-width FASTBUS module containing approximately 100 integrated circuits. Physical
dimensions of the module are per the FASTBUS specification. The PC4b version also has a small child board
containing the Trigger FIFO and associated logic, and NIM level converters, near the module front panel.

1.3.1 Module Pinout (Backplane Connections)

a) FASTBUS Crate Segment (130 pin FASTBUS standard connector)
Refer to the FASTBUS specification.

b) Auxiliary Port (195 pin FASTBUS standard 3 row connector), see Table 4.

10 November 1, 1995

FSCC Hardware Manual Version PC4b

1.3.2 Front Panel

Differential RS-485 Levels

Differential RS-485 Levels

Front Panel 0 +
Front Panel 1 +
Front Panel 2 +
Front Panel 3 +

N/C
N/C
N/C
N/C
N/C
N/C

N/C
N/C
N/C
N/C
N/C

Trigger Strobe +
Trigger IDO +
Trigger ID 1 +
Trigger ID 2 +
Trigger ID 3 +

9101
00CF

SLAVE

O

MASTER

140d 1Nd1NO

140d 1NdNI

oic:o

I
_|
_|
=

|

N/C
N/C
N/C
N/C
N/C
Trigger Strobe -
Trigger ID O -
Trigger ID 1 -
Trigger ID 2 -
Trigger ID 3 -

|

LED
LED
Front Panel 0- | 5
Front Panel 1- | =
Front Panel 2 - §
Front Panel 3 - s
N/C =
N/C ©
N/C &
N/C —
N/C 2
N/C o
NIM Level
Version of

Trigger Strobe
Input

ST S87-SY URRIIA

NIM Level

Trigger Hold Off

Output

Push Button

Low True
TTL Levd
Input

PERM
IN

PERM
ouT

— NIM =

Clear To Send
(female pin)
Transmit Data—
ale i
(male pin) TERM
N/C Lo
(female pin) @
Receive Data—|
o PC4b

ETHERNET

(o]

punoio
1V 10N

pIdIYS ONd
ONINIVMN

@
by
>®

SYSTEMS

NIM Level
Permit In
I nput

NIM Level
Permit Out
Output

Receive Data
(female pin)

Ground

(male pin)
Tansmit Data
(female pin)

Ground
(male pin)

RS-232
Serial
Ports

Ethernet 10-base2

ThinWire BNC

Connector

Figure2 FSCC Front Panel

Novmber 1, 1995

11

FSCC Hardware Manual Version PC4b

FASTBUS Save
FASTBUS Master

Front Panel Output:

NIM Trigger Strobe

Input Port

Yellow LED. Indicates that the FSCC has been addressed as a slave on FASTBUS.
Green LED. Indicates that the FSCC is Master on FASTBUS.

The Front Panel Output Port consists of four latched differential RS485 pairs, which are
driven by the processor viaa parallel port. These are user defined.

Tablel Front Panel Output Port Pinout

Pin#

1Front Panel 0 +
2Front Panel O -
3Front Pandl 1 +
4Front Panel 1 -
5Front Pandl 2 +
6Front Panel 2 -
7Front Panel 3 +
8Front Panel 3 -
9-20Reserved

NIM level version of Trigger Strobe input. NIM Trigger Strobe is logically ORed with
the RS-485 version of Trigger Strobe on the front panel Input Port Connector. (See Input
Port below).

The front panel Input Port (DART Trigger Link Input) consists of five differential RS 485

pairs. Four of the differential pairs are the four bits of the Trigger ID. The fifth
differential pair is the RS-485 Trigger Strobe Input. The RS-485 Trigger Strobe input is
logically ORed with the NIM level Trigger Strobe input. The 4 bit Trigger ID is clocked

into a 64 word FIFO (First In, First Out) memory by the leading edge (high to low
transition) of the Trigger Strobe Input. The purpose of this FIFO is to allow the FSCC to

be used with front end modules which are capable of buffering more than one event's
worth of data. The Trigger FIFO allows the FSCC to queue as many as 64 readout
triggers. The Trigger ID of the next event to be output, can be read by the processor
through a parallel port. If enabled in the H&C Control register, the four trigger ID bits are
passed automatically from the Trigger FIFO into the Header/Word Count word of the
Data Output Port. Executing a FASTBUS End Of Event instruction clocks the next
Trigger ID out of the Trigger FIFO. The Trigger FIFO’s Output Ready signal generates a
processor interrupt if enabled. Output Ready gives an active edge when the Trigger FIFO
goes from empty to not empty, and whenever an End Of Event instruction is executed.
The Trigger ID should be valid for at least 100 nsec prior to the leading edge of the
Trigger Input Strobe and remain valid for at least 100 nsec after the leading edge of the
strobe. The Trigger Strobe pulse width should be at least 100 ns.

Note: Resetting the Trigger FIFO when the Trigger Strobe input is active (- input high, +
input low) causes a superfluous word to be clocked into the Trigger FIFO. This will cause
a TSTRB interrupt if enabled. A floating (unconnected) RS-485 Trigger Strobe Input is
always interpreted as inactive. The Trigger FIFO is reset whenever the Header and
Counter is reset.

12

November 1, 1995

FSCC Hardware Manual Version PC4b

Table2 Front Panel Input Port Pinout

Pin#

1-10 Reserved

11 Trigger Strobe +
12 Trigger Strobe -
13 Trigger IDO +
14 Trigger IDO -
15 Trigger ID1 +
16 Trigger ID1 -
17 Trigger ID2 +
18 Trigger ID2 -
19 Trigger ID3 +
20 Trigger ID3 -

Trigger Hold Off (THO) ThisNIM level output can be configured via a jumper block on the child board, to

go true during one of the following four conditions:

1) The Trigger FIFO is Almost Full (True when 56 or more Trigger Strobes are
queued).

2 The Trigger FIFO is Half Full (True when 32 or more Trigger Strobes are
queued).

3) An End Of Event FASTBUS instruction has been executed (a 100ns pulse).

4) The Trigger FIFO is not empty (True when 1 or more Trigger Strobes are
queued).

THO is also driven true while the FSCC's Data FIFO is half full. THO will latch true if
the Data FIFO becomes full. The THO latch is reset by resetting the Header and Counter.

Permit_In/Permit_Out: Serial "daisy-chain" signals for FSCC auxiliary port bussing, LEMO connectors. NIM
level (150ns) pulse. When the Output Port is configured to be either middle or last in a
permit chain, the Output Port begins outputting data when Permit In is received. Permit
Out is generated when the event has been completely output. When the Output Port is
configured to be first in a permit chain, the Output Port begins outputting data without a
Permit In the first time after configuration. Each subsequent time, the Output Port waits

for Permit In.

Reset Push-button Hard processor reset.

Remote Reset Hard processor reset. This is an active low TTL input. Shorting the connector, inserting a
50 ohm terminator, or applying a TTL low will cause a reset. This input may be Daisy-
Chained.

Novmber 1, 1995 13

FSCC Hardware Manual Version PC4b

Serial Ports

Ethernet Port:

RS-232 signal levels (4 pin LEMO connectors). One connector for Host communication,
and one for Termina communication.

Table3 Front Pandl Serial Port Connector Pinouts

Termina port
Pin# Function
1
2
3
4

Pin# Function
1

2
3
4

TXD (transmit data)
(no connection)
RXD (receive data)
Ground

Host port (Null Modem)

RXD (receive data)
CTS (+10V Reference)
TXD (transmit data)
Ground

| EEE 802.3/Cheapernet (10BASE2) LAN Standard, |solated BNC Connector.

14

November 1, 1995

FSCC Hardware Manual Version PC4b

Table4 Auxiliary Port Connector Pinout

Facing REAR of Module

PIN Row A Row B Row C

1 No Connection No Connection No Connection
2 No Connection No Connection No Connection
3 No Connection No Connection No Connection
4 No Connection ACO00 No Connection
5 No Connection ACO1 No Connection
6 No Connection ACO02 No Connection
7 No Connection ACO03 No Connection
8 No Connection ACO04 (EOR Out Enable) No Connection
9 No Connection No Connection No Connection
10 No Connection No Connection No Connection
11 No Connection ACO05 No Connection
12 -5.2 Volt Supply AC06 +5.0 Volt Supply
13 No Connection ACO7 No Connection
14 No Connection ACO08 (Data Strobe) No Connection
15 No Connection ACQ09 (End Of Record) No Connection
16 No Connection D00 No Connection
17 No Connection D01 No Connection
18 No Connection D02 No Connection
19 No Connection D03 No Connection
20 GND D04 No Connection
21 No Connection D05 No Connection
22 GND D06 GND

23 No Connection D07 No Connection
24 No Connection D08 No Connection
25 No Connection D09 No Connection
26 No Connection D10 No Connection
27 No Connection D11 No Connection
28 No Connection D12 No Connection
29 No Connection D13 No Connection
30 No Connection D14 No Connection
31 No Connection D15 No Connection
32 -5.2 Volt Supply D16 GND

33 No Connection D17 No Connection
34 No Connection D18 No Connection
35 No Connection D19 No Connection
36 No Connection D20 No Connection
37 No Connection D21 No Connection
38 No Connection D22 No Connection
39 No Connection D23 No Connection
40 No Connection D24 No Connection
41 No Connection D25 No Connection
42 No Connection D26 No Connection
43 +5.0 Volt Supply D27 GND

44 No Connection D28 GND

Novmber 1, 1995

15

FSCC Hardware Manual Version PC4b

PIN Row A Row B Row C
45 No Connection D29 No Connection
46 No Connection D30 No Connection
47 No Connection D31 No Connection
48 No Connection No Connection No Connection
49 No Connection No Connection No Connection
50 No Connection No Connection No Connection
51 No Connection No Connection No Connection
52 No Connection No Connection No Connection
53 GND No Connection +5.0 Volt Supply
54 No Connection No Connection No Connection
55 No Connection No Connection No Connection
56 No Connection No Connection No Connection
57 No Connection No Connection No Connection
58 No Connection ACI10 (Wait) No Connection
59 No Connection ACl11 (Data Out Enable) No Connection
60 No Connection AC12 (Strobe Out Enable) No Connection
61 No Connection No Connection No Connection
62 No Connection No Connection No Connection
63 GND No Connection -5.2 Volt Supply
64 No Connection GND No Connection
65 No Connection -2.0 Volt Supply No Connection

1.4 Power Requirements

Total power dissipation is approximately 40 watts drawn from the three supplies listed in Table 5 Power Supply

ReguirementsTable 5.

Table5 Power Supply Requirements

Supply

+5.0 volts
-5.2 volts
-2.0volts

Current Draw Fuse

6 amps 10 Amp
2 amp 5Amp
0.2 amps 1Amp

16

November 1, 1995

FSCC Hardware Manual Version PC4b

2. Theory of Operation and Operating Modes

RAM| ROM | RS- | NET
232 I1/F
[Instructions
|
[Data
A CPU (68020)

List Processor
FIFO FIFO
o i i \A
© List Normal Header el
Control | OPORT 5
¥ Sequencer |Sequencer) and FIFO |controller =
3 . Counter é‘,
Data FIFO ata
0 —= 3 —>
%)
8 FASTBUS Interface Data o)
= —) Output Port Interface 2
1%
& it

‘ End Of Event T

Counter Clock

Figure3 FSCC Functional Block Diagram

Figure 1 shows a general block diagram of the FSCC. Figure 3 shows a functional block diagram. Theindividua
blocks are explained in detail below.

2.1 Basic Operation
All module operations are controlled by memory-mapped instructions from the 68020 Pr ocessor.

Low level management of the various ports is handled by dedicated controllers. In the case of the Serial and
Ethernet Ports, the controllers are commercia integrated circuits. Controllers for the FASTBUS Port (FPORT)
and Auxiliary Output Port (OPORT) areimplemented using PLD state machines.

To maximize throughput, high speed block transfer data from FASTBUS to the Auxiliary Output Port is routed
through the Data FIFO which serves two functions; it 1) decouples the input and output data rates, and 2) provides
buffering of one crate of front-end data for insertion of leading word counts on output. The buffer is implemented
using commonly available integrated circuit FIFO's which provide a depth of 4K, 32-hit words (16K Bytes). The
processor can write data directly into the Data FIFO for testing purposes.

A 512 x 32-hit (2K Bytes) Processor FIFO connects the FASTBUS port to the Processor. Input to this FIFO can
be enabled or disabled by the Processor. When enabled, any data which is written to the Data FIFO will
simultaneously be written to the Processor FIFO. The Processor FIFO provides a high-speed path through which
the processor can sample datain the event stream.

A 512 x 40-bit (512 x 32-bit FASTBUS operand, and 512 x 8-hit instruction) List FIFO aso connects the
Processor to the FASTBUS data port. This FIFO is written by the Processor and contains a FASTBUS instruction
list for use by the FPORT Controller (List Sequencer). Use of the List FIFO increases the speed of the readout by
eliminating the overhead penalty induced by the CPU. The price paid for the speed increase is reduced FASTBUS

Novmber 1, 1995 17

FSCC Hardware Manual Version PC4b

error reporting ability. When the OPORT controller encounters an ERROR, it simply sets the “Bad Event” bit in
the OPORT Header/Word Count word, and continues.

To further improve the readout speed of the FSCC,oeal Word Counter is implemented. In a typical
application, this counter is loaded directly from the first word of a Block or Pipelined transfer, with a fixed word
count position (bits 0-11). The counter can also be preset by the processor for use with slave modules which do
not supply a leading word count.

For slave modules capable of producing leading word counts, the local counter eliminates the extra delay the
FPORT Controller normally incurs in checking for the SS=2 "end-of-block™ condition. It allows better pipelining

of the data since the controller will not be required to read beyond end-of-block and then back-up it's internal
counters and pipeline registers. The Local Word Counter can also be used to produce intermediate word counts, at
user-selected boundaries for insertion in the main data stream. Maximum word count is 4095.

A Global Word Counter and Header Latch (GWC) is also implemented. This is normally used to provide a
total count of all data read from a group of modules. It is clocked by the FPORT Controller on each FASTBUS
data word. The value of this counter is inserted into the output data stream along with 5 bits of header
information on command of the OPORT Controller (execution of an End Of Event instruction). The FPORT
Controller provides both a control and a data "end-of-event" (EOE) signal. The control EOE signal tells the H&C
Controller to push the GWC along with the current header into the Control FIFO. The data EOE is put into the
Data FIFO behind the last event of data so that the OPORT controller can tell where one event ends and the next
begins when it clocks the data out. The word count is limited to 12 bits (4096 words). The 5 bit header field is
loaded by the processor. The lower four bits of the header field can automatically contain the Trigger ID data from
the Trigger FIFO if desired. Register definitions and operating modes for the header/counter latch (H&C) and
OPORT controller are outlined in this document.

A smallControl FIFO connects the Header/Word Count outputs of the H&C (Header & Counter) Controller, and
Data FIFO outputs, to allow overlapping of events in the Data FIFO. This is necessary because the total word
count of an event is given by the Global Word Counter, which counts the data words as they are read in.
Therefore, the word count is not known until the event readout is complete. The OPORT wants to know the word
count before it starts outputting an event, so that it can output the word count first (leading word count OPORT
protocol). Obviously the word count cannot be inserted into the Data FIFO because it would come out last. The
word count is instead pushed into a separate FIFO, the Control FIFO. When an End Of Event FPORT instruction
is executed, the following happens. The FPORT inserts an End Of Event flag into the Data FIFO. It then drives
the End Of Event signal to the OPORT interface. This causes the H&C Controller to push the Global Word Count
value along with the Header bits into the Control. The FPORT Controller is now free to begin a new readout
without concern for the data in the Data FIFO, or any event being output through the Output Port. The OPORT
controller now sees that the Control FIFO has a word in it, and it pulls this word out of the Control FIFO and
outputs it as soon as the Permit In token is received. It then takes the data from the Data FIFO, and outputs it one
word at a time until it sees the End Of Event flag come out of the FIFO. The OPORT Controller then drives the
End Of Record output (if the OPORT controller is configured to be “last” in the permit chain), then outputs the
Permit Out pulse to pass the token. Note that EOE (End Of Event) is an internal FSCC signal and it should not be
confused the EOR (End Of Record) which is an external signal driven by the OPORT Controller.

18 November 1, 1995

FSCC Hardware Manual Version PC4b

2.2 On-Board Processor

The processor is a Motorola 68020 running at 20 MHz. The 68020 was selected strictly on the basis of software
compatibility with existing Fermilab modules.

The PC4b processor address map differs from FSCC versions PC4 and older. The map is identica to version
PC4a. Table 6 shows the absolute address map.

Table6 Processor Address Map

Base Address Transfer Type Name Purpose
0000 0000 byte, word, long word ROM1S* Program EPROM (Bank 1, 2048K)
0020 0000 hyte, word, long word ROM2S* Program EPROM (Bank 2, 2048K)
0080 0000 hyte, word, long word RAM1S* Program RAM (Bank 1, 512K)
0088 0000 hyte, word, long word RAM2S* Program RAM (Bank 2, 512K)
OR
0080 0000 hyte, word, long word RAM1S* Program RAM (Bank 1, 2048K)
00AO 0000 byte, word, long word RAM2S* Program RAM (Bank 2, 2048K)
0150 0000 hyte NVDS* Real-time clock
0150 O0OE hyte NVDS* Non-volatile memory 8K (8178 Bytes)
0160 0000 byte, word, long word ETHS Ethernet Dual-Port RAM (8K Bytes)
0168 0000 longword CAS Ethernet Channel Attention
0170 0000 hyte UARTS Serial Ports (68681)
0178 0000 hyte TMRS* Interrupt Vector/Timer Logic (MC68901)
0180 0000 hyte OPORTS* OPORT Controller
0188 0000 hyte PARLLS* Auxiliary Parallel Port
0190 0000 word H& CSEL* Header/Counter Registers
01A0 0000 byte, word, long word LPBKS Ethernet loopback mode set
01A8 0000 byte, word, long word LPBKC Ethernet loopback mode clear
0198 0000 byte, word, long word ETHRES Ethernet reset set
01BO 0000 byte, word, long word ETHRESC Ethernet reset clear
01B8 0000 longword FB1S* FPORT Controller (Fast cycleinstructions)
01CO 0000 long word FB2S FPORT Controller (Slow cycle instructions)
01C8 0000 hyte FCSEL* FASTBUS Parallel Port 1 (MC68230)
01D0O 0000 hyte FSSEL* FASTBUS Parallel Port 2 (MC68230)
01D8 0000 longword FIFO1S* Processor FIFO
01EO0 0000 longword FIFO2S* FPORT List FIFO
01E8 0000 Ilong word FB1S* and FB2S* User FPORT Controller select
01F0 0000 longword FB3S* FPORT List Halt Request

* Activelow signal.

Processor memory normally consists of 1 MByte of 0 wait state RAM, and 2MBytes of 1 wait state EPROM, but it
is possible to install up to 4MBytes of EPROM, and 4MBytes of RAM. Byte, word and long-word accesses are

supported. PC4b boards are equipped with a jumper to allow 28-pin or 32-pin EPROM's to be installed if desired.

Novmber 1, 1995

19

FSCC Hardware Manual Version PC4b

Jumpers are also provided to allow the two (2 MByte) banks of EPROM to be swapped in the 68020’'s address
space. This feature can be quite useful when debugging an EPROM based application program.

A DS1386-8 real-time clock with interrupt capability and 8 MBytes of NVRAM is provided for system use. Both
RTC, and NVRAM functions are maintained by a built-in lithium battery. The NVRAM is currently used to hold
module-specific information (e.g., Ethernet address). PC4b FSCC'’s also feature a write protect bit for the DS1386
to prevent a program from accidentally over writing the NVRAM. This bit is bit zero of the DUART’s eight bit
parallel /0 port, and is set and cleared by the following commands:

MOVE.B #$01,$0170000E *Write enable the NVRAM
MOVE.B #$01,$0170000F *Write protect the NVRAM

Processor reset occurs at power-up, by pressing the front-panel Reset Push-button or through the front panel reset
input Lemo. A reset can also be generated by a "watchdog" timer contained in the FASTBUS Parallel Port 1
controller (68230). If enabled, this timer must be reset by software periodically. The timer can be set for any
period from 4 psec up to approximately 50 seconds. A module reset can be forced by software which drives the
parallel port watchdog time-out bit low.

A Processor bus response timer is contained in the other 68230 port controller. When enabled, this timer will
generate a 68020 BUS ERROR exception if the Processor fails to complete a bus cycle within the specified time.
The bus response timer also serves as the FASTBUS "long timer" when operating the FPORT in CPU mode.
However, since there is a one level instruction pipe-line, the time-out will occur on the FASTBUS instruction
following the instruction which actually caused the FPORT controller to hang. When using the FPORT in LIST
mode, the CPU is not writing instructions directly into the FPORT so the bus response timer does not time-out if
the FPORT controller hangs.

2.2.1 Control and Status Registers

The FSCC has no hardware implemented control or status registers which are independent of the associated
controllers. Refer to the appropriate controller description for register definitions. Since the FSCC’s slave
interface is software driven, any FASTBUS CSR register may be defined in software.

2.2.2 Error Responses

The FPORT Controller normally monitors the FASTBUS exception logic. When a FASTBUS error or FASTBUS
Reset is detected, the controller will terminate its current operation and return to an idle state. If another
FASTBUS instruction is pending (Processor pipelined mode), the FPORT Controller will return Processor
DSACK immediately to clear the bus and allow interrupt processing. The instruction which was pending will not
be executed. If the FPORT Controller fails to recognize an error and return control to the Processor, the Processor
will eventually time-out with a BUS ERROR exception. This can happen, for example, if the address/data cycle
timer is disabled and no FASTBUS acknowledge is received.

FASTBUS exceptions can be cleared by asserting the parallel port FASTBUS cleaF@tr&RR) signal. The
FASTBUS interrupt vector must be programmed and the interrupt enabled to allow recognition of FASTBUS
exceptions.

Because FASTBUS operations can be queued, a FASTBUS error interrupt may not apply to the current processor
data cycle. For example, a FASTBUS block transfer can be initiated and then followed by any number of non-
FASTBUS processor operations while the block transfer takes place. A FASTBUS error during the block transfer
generates an interrupt which may be unrelated to the current processor activity. For any FASTBUS interrupt, the
parallel port status lines must be examined to determine the cause of the interrupt.

20 November 1, 1995

FSCC Hardware Manual Version PC4b

If aFASTBUS error occurs while the FPORT is operating in LIST mode, the List Sequencer tags the event as bad
by setting the Bad_Event bit in the Header word of the current event. The error is then cleared and the sequencer
attempts to continue executing the list.

2.2.3 Interrupts
A 68901 multifunction peripheral provides the vectored interrupt control. 16 interrupt conditions are prioritized by

the 68901. Eight of these conditions are internal to the 68901, and eight are connected to the 68901's GPIP
(General Purpose I/O Interrupt Port) inputs. Interrupts for the following GPIP inputs are defined on FSCC's;

Table7 HardwarelInterrupts

Interrupt Line Name Function

GPIP7 TFIFOOR TFIFO Output Ready (rising edge)
GPIP6 RTCREQ* Real-time Clock (falling edge)

GPIPS ETHREQ Ethernet (rising edge)

GPIP4 SERREQ* Serial Port (falling edge)

GPIP3 FBERR* FASTBUS error (falling edge)

GPIP2 AUXREQ* OPORT Controller (falling edge)

GPIP1 FBREQ* FASTBUS request (falling edge)
GPIPO FPCREQ* FASTBUS Port Controller (falling edge)

* Active low signal.

Interrupt vectors are programmable and interrupts can be separately enabled, disabled or masked in the 68901
controller. Refer to the Motorola 68901 manual for register definitions. The 68020 interrupt mask is hardwired to
IPL2, which corresponds to a interrupt level of 4, and is not used except to enable or disable all interrupts.

TIFIFOOR-GPIP7. The Trigger FIFO’s Output Ready line is connected to IRQ7. The 68901 will see an active
edge on the Output Ready line and generate an interrupt, when the first Trigger Strobe clocks the FIFO, and
each time an End Of Event instruction clocks a word out of the Trigger FIFO.

RTCREQ*-GPIP6: The real-time clock (Dallas Semiconductor DS1386-8) can be programmed to generate periodic
interrupts at a rate of 10 msec to 100 seconds. It can also be programmed to interrupt on a specific date or/and
time.

ETHREQ-GPIP5: This is the Ethernet message interrupt. Ethernet messages are buffered by the controller in Dual-
Port memory so immediate interrupt response is not required.

SERREQ*-GPIP4: The serial ports can be programmed to generate interrupts when the receive buffer is loaded or
the transmit buffer is empty.

FBERR*-GPIP3: FASTBUS error conditions result in a processor interrupt when enabled. The conditions are:
1)FASTBUS time-out-failure of a slave module to respond withits 8n an address or data cycle. This error
can be disabled through the short timer enable bit (STEN) in parallel port 2.
2)FASTBUS SS errors-SS responses of 1,2,3,4,5,6 or 7 on a Address cycle or 1,3,4,5,6, or 7 on a Data cycle
will cause a FASTBUS error interrupt. The last non-zero value of SS is latched at parallel port 2 (FLSSO,
FLSS1, FLSS2).
3)Data FIFO overflow.

AUXREQ*-GPIP2: OPORT request to processor. The Output Port Controller Interface can be EPROM
programmed to cause this interrupt on Step Acknowledge, Permit in received, or on any combination of these
two events.

FBREQ*-GPIP1: (External) FASTBUS request-This interrupt is generated when the FSCC is accessed as a slave or
when a FASTBUS Service Request (SR) or FASTBUS Reset (RB) is issued. RB does not directly reset the
processor. A processor reset can be generated by software in the RB interrupt handler. RB does not cause an
interrupt if it is being driven by the FSCC itself.

Novmber 1, 1995 21

FSCC Hardware Manual Version PC4b

FPCREQ*-GPIPO: The FPORT controller can be programmed to assert an interrupt request at any time. In the
current standard FASTBUS instruction set, the FPORT controller is programmed to generate this interrupt at
the End of Block in Block and Pipelined transfers. In the current List Mode FASTBUS instruction set, an
FPCREQ interrupt instruction can be inserted at any point in the list.

22 November 1, 1995

FSCC Hardware Manual Version PC4b

3. Communication Interfaces

The IEEE 802.3/Cheapernet (10BASE?2) interface physical connection is through a front-panel BNC connector.
The Intel 82586 coprocessor interfaces to the 68020 through a 2K by 32 bit dua-ported memory. This
configuration allows both processors to operate independently and is necessary to avoid buffer overrun if the 68020
is unable to process interrupts for extended periods. It also improves the speed of FASTBUS operations since
there is no contention on the processor bus.

Two standard RS-232 serial ports (Signetics 68681 DUART) are provided for development and diagnostic use.
One of these will be connected to aterminal, PC, or Work Station. The other can serve as alink to a host machine.
Data rates to 9600 baud will be supported. Operation of these portsis controlled by on-board software. At module
initialization, the ports are configured for 9600 baud using XON / XOFF protocol. Refer to the 68681 data sheet
for register definitions. The Host port connector iswired as a null-modem port.

FASTBUS is accessed through the crate segment backplane. All FASTBUS operations are performed by a
microsequencer as directed by the processor. A sequence of FASTBUS transfers may be performed to the Data
FIFO's or to the Processor FIFO's without processor intervention.

The Output Port is controlled by a microsequencer which is directed by the processor. A transfer may be initiated
and proceed unattended. The Output Port transfers data through the Auxiliary connector of the backplane.
Personality cards, which plug into the auxiliary connector from the rear of the FASTBUS crate are available for
standard protocols. Specifications for available personality cards are included as appendixes to this document.

3.1 FASTBUS Interface (FPORT)

The FASTBUS Port Controller (FPORT) provides most of the low-level control of FASTBUS operations, based
on simple memory-mapped instructions from the processor. It consists of two sets of three parallel EPS448
programmable sequencers plus assorted PLD's. The two sets of sequencers allows the FPORT to operate in one of
two user selectable modes. Normal Mode, and List Mode. Normal or Processor mode is the default mode of
operation. In Normal Mode, instructions are passed from the processor to the FPORT controller one at a time.
Each instruction passed to the FPORT is individually acknowledged either after or during execution (depending on
the instruction). In List Mode, the FPORT operates similarly to Normal Mode, but the FASTBUS instructions are
loaded into the List FIFO memory. The List Sequencer is then enabled, and execution of the list of FASTBUS
instructions is executed without processor intervention. Instructions are provided to allow self repeating lists
which execute upon receipt of a Front Panel Trigger Strobe. Normal Mode allows a limited amount of FASTBUS
data manipulation, and better error source determination over List Mode. List mode allows the FPORT and
OPORT to work to read-out data and output it without processor intervention. List mode is usually faster due to
elimination of CPU overhead.

The EPS448 is EPROM programmable and the instruction set cannot be modified by the processor. FPORT
Controller output signals are defined Table 9. The EPS448 is limited to 256 states, of which only 64 support
conditional branching. Therefore, the standard sequencer will directly execute only FASTBUS primitive
operations. Two 68230 parallel ports provide status and control communication between the processor and the
FASTBUS control logic. Parallel port lines are defined in Table 8 ("I" in the first column indicates an input signal,
"O" indicates an output, "S" indicates a special function pin)

Port data direction and signal states are individually programmable. The software should avoid defining or driving
INPUT pins as OUTPUTSs, since multiple drives on the same signal line can cause circuit damage. If in doubt,
leave ports in the normal power-on reset configuration.

Novmber 1, 1995 23

FSCC Hardware Manual Version PC4b

Table8 Paralld Port Bit Definitions

Input/Output

0Oo0ooo~ ~ ~——

—00000~O0
(02}

Input/Output

O
O
O
O
O
|

O
O

ooo~~—~—~——

o —O0
m(l)

Bit
AO
Al
A2
A3
A4
A5
A6
A7

BO
Bl
B2
B3
B4
B5
B6
B7

Co
C1
c2
C3
C4
C5
C6
Cc7

Bit
AO
Al
A2
A3
A4
A5
A6
A7

BO
Bl
B2
B3
B4
B5
B6
B7

Co
C1
c2
C3
C4
C5
C6
c7

Parallel Port 1

Signal Function

FRRD FASTBUS received RD
FRDS FASTBUS received DS
FRMSO FASTBUS received MSO
FRMS1 FASTBUS received MS1
FRMS2 FASTBUS received MS2
FRAK FASTBUS received AK
FRDY FASTBUS master
FSLV* FASTBUS slave mode
TRIGO Trigger Vector 0 All Port B inputs are latched
TRIG1 Trigger Vector 1 on the rising edge of the
TRIG2 Trigger Vector 2 trigger input strobe.
TRIG3 Trigger Vector 3
FPO Front Panel 0 Front Panel differential RS-485
FP1 Front Panel 1 Outputs
FP2 Front Panel 2
FP3 Front Panel 3
PRS* Processor FIFO reset
PEF* Processor FIFO empty
COPYEN Processor FIFO copy enable
WDTO* "Watchdog" time-out
DRS* Data FIFO reset
DRT* Data FIFO retransmit
SRS* Sequencer List FIFO reset
DFF* Data FIFO overflow
Parallel Port 2
Signal Function
FDGK FASTBUS drive GK
FDRB FASTBUS drive RB
FDSSO FASTBUS drive SSO
FDSS1 FASTBUS drive SS1
FDSS2 FASTBUS drive SS2
CSR/DATA* FASTBUS MSO latched at AS(u)
LFIFOEN List FIFO Enable
LCEN Local Counter Enable
SSTATO Sequencer status 0
SSTAT1 Sequencer status 1
SSTAT2 Sequencer status 2
SSTAT3 Sequencer status 3
FRSR FASTBUS SR
LRT* List FIFO Retransmit
FCLERR FASTBUS Clear Errors
SNRESET* FPORT Controller Reset
STEN Short timer enable
STO* Short time-out
LTEN Long timer enable
LTO* Long time-out
FLSSO FASTBUS latched SSO
FLSS1 FASTBUS latched SS1
FLSS2 FASTBUS latched SS2
FRESET* FASTBUS reset

24

November 1, 1995

FSCC Hardware Manual Version PC4b

Table9 FPORT Sequencer Output Bits

EP$448-3

EPS448-2

EP$448-1

Bit

FOO
FO1
F02
FO3
FO4
FO5
FO6
FO7
F08
FO9
F10
F11
F12
F13
F14
F15
FOO
FO1
F02
FO3
FO4
FO5
FO6
FO7
F08
FO9
F10
F11
F12
F13
F14
F15
FO0O
FO1
FO2
FO3
FO4
FO05
FO06
FO7
FO08
FO09
F10
F11
F12
F13
F14
F15

Name
SMUXO0
SMUX1
SMUX2
FDSACK*
SSTATO
SSTAT1
SSTAT2
SSTAT3
CCLERR
TIMER
CEOE
DEOE
FCLK
STATCLK
SR*
PFIFOEN
FSAS
FCAS
FSDS
FCDS
FSDK
FCDK
FDWT
FDMSO0
FDMS1
FDMS2
FDRD
FDEG
MUX3*
FEOBA
FREQ
FREL
DFIFOEN
FPCREQ*
FCOE*
FDOE*
SDG*
DSBA
DCPBA
DSAB
SDCPAB
DDIR
SPOE*
SDW
SRT*
SLCOE
LCO

LC1

Function

Select sequencer condition code set 0
Select sequencer condition code set 1
Select sequencer condition code set 2
Processor data strobe acknowledge
Sequencer status bit 0

Sequencer status bit 1

Sequencer status bit 2

Sequencer status bit 3

Controller Clear Error

Short timer enable

Control "End-of-Event"

Data "End-of-Event"

Global word counter clock
Sequencer status clock

Sequencer List FIFO read

Processor FIFO input enable
FASTBUS set AS

FASTBUSclear AS

FASTBUS set DS

FASTBUSclear DS

FASTBUS set DK

FASTBUS clear DK

FASTBUS drive WT

FASTBUS drive MSO

FASTBUS drive MS1

FASTBUS drive MS2

FASTBUS drive RD

FASTBUS drive EG

List Instruction Select

FASTBUS EOB Acknowledge
FASTBUS request bus

FASTBUS release bus

Data FIFO input enable

Sequencer Interrupt Request (TRAP)
FASTBUS control output enable
FASTBUS data output enable

Data pipeline latch enable

Data pipeline latch B->A mode control
Data pipeline latch B->A clock

Data pipeline latch A->B mode control
Data pipeline latch A->B clock

Data pipeline latch direction
Processor transceiver output enable
Data FIFO write

Sequencer List FIFO retransmit
Local word counter output enable
Local word counter control O

Loca word counter control 1

Novmber 1, 1995

25

FSCC Hardware Manual Version PC4b

Table 10 shows a list of supported memory mapped FASTBUS master operations permitted by the standard
FPORT sequencer instruction set.

Table10 Normal Mode FASTBUS Instructions

FPORT Base addresses for PC4a FSCC's:

SLOWBASE EQU $01C00000

FASTBASE EQU $01B80000

USRBASE EQU $01E80000

Address (HEX) FASTBUS Operation Status Code
SLOWBASE+300 BUS_ARBITRATE 1
FASTBASE+004 BUS_RELEASE 2
FASTBASE+304 ADDRESS_DATA_GEOGRAPHICAL 3
FASTBASE+308 ADDRESS_CSR_GEOGRAPHICAL 3
FASTBASE+30C ADDRESS_DATA_LOGICAL 3
FASTBASE+310 ADDRESS_CSR_LOGICAL 3
FASTBASE+314 ADDRESS_DATA_BROADCAST 3
FASTBASE+318 ADDRESS_CSR_BROADCAST 3
FASTBASE+31C ADDRESS_RELEASE 4
SLOWBASE+320 DATA PROCESSOR_RANDOM_READ 5
FASTBASE+324 DATA PROCESSOR_RANDOM_WRITE 5
SLOWBASE+328 DATA PROCESSOR_SEC ADDRESS READ 6
FASTBASE+32C DATA PROCESSOR_SEC ADDRESS WRITE 6
SLOWBASE+008 DATA PROCESSOR_BLOCK_TRANSFER_READ 5
FASTBASE+00C DATA PROCESSOR_BLOCK_TRANSFER_WRITE 5
FASTBASE+330 DATA PROCESSOR_BLOCK_TRANSFER_TERMINATE 5
FASTBASE+334 DATA FIFO_BLOCK TRANSFER_READ 7
FASTBASE+338 DATA FIFO_PIPELINED_READ_100 8
FASTBASE+33C DATA FIFO_PIPELINED_READ_200 8
FASTBASE+340 DATA FIFO_PIPELINED_READ_400 8
FASTBASE+020 SEQUENCER_NULL C
SLOWBASE+028 BULB_TEST B
SLOWBASE+010 LOCAL_COUNTER_LOAD 9
SLOWBASE+014 LOCAL_COUNTER_READ 9
SLOWBASE+018 FIFO_WRITE_DATA A
SLOWBASE+024 END_OF_EVENT E
SLOWBASE+02C END_OF_EVENT_REXMIT E

Table 11 gives a list of supported slave instructions. Slave instructions are not supported in List Mode.

Table1l1l Normal Mode FASTBUS Slave I nstructions

SLOWBASE+01C
FASTBASE+344

SLAVE_DATA_INPUT
SLAVE_DATA_OUTPUT

D
D

The following instruction has an effect only if executed after sequencer reset and before any other FASTBUS
instruction is executed. If executed any other time, it has the same effect as a NULL instruction.

USRBASE+020

USER_SEQUENCER_SELECT

C

November 1, 1995

FSCC Hardware Manual Version PC4b

Refer to Appendix A for detailed instruction definitions.

3.1.1 FASTBUS Controller Operation

Since the 68020 is an asynchronous processor, when it initiates a processor bus cycle it must wait for an
acknowledge signal before continuing with the next bus cycle. The FASTBUS instructions Table 10 are seen by
the processor as functioning in one of two ways. "Fast" instructions return the processor data acknowledge signal
immediately upon being invoked (a memory mapped instruction is invoked by addressing it), whereby "Slow"
instructions do not return the processor data acknowledge until later in the microsequencer routine. The 68020 is
held in the middle of a bus cycle, unable to execute any other instructions until the acknowledge signal becomes
true. Therefore, dow FASTBUS instructions are used only where necessary. An example is the
DATA_PROCESSOR_RANDOM_READ instruction. This instruction does not return the acknowledge signal
until it has received and latched the data received from the FASTBUS dave. The 68020 sees the instruction
similarly to a simple 32-bit memory read. If the FASTBUS short timer is enabled and the slave does not respond,
the time-out would cause the processor data acknowledge to be returned, the current FASTBUS instruction to be
aborted, and a 68020 interrupt. |If the short timer is not enabled, the long timer would eventually time out, and
cause a 68020 bus error exception. The FASTBUS sequencer would then have to be reset since it would still be
waiting for the slave to respond. In genera, instructions which return data immediately to the 68020 are slow
instructions. All other instructions are fast instructions. Slow instructions can be identified by their base address
of 01C00000, fast instructions have a base address of 01B80000.

3.1.2 FASTBUS Arbitration
The FSCC supports standard and assured access arbitration. It does not support prioritized arbitration. Bits 0-5 of
the processor data bus contain the arbitration vector. Bit 7 determines whether the assured access protocol is
active. Bit 6 and 8-31 are ignored. These bit assignments correspond to CSR 8. A FASTBUS arbitration can be
performed by a processor instruction of the form -

MOVE.L CSR8, BUS _ARBITRATE

Since BUS ARBITRATE is a dow instruction, the processor does not receive its acknowledge until the
FASTBUS arbitration cycle has been won. If the arbitration cycle is not won before the long timer times out, a bus
error will occur. The bus can also be acquired simply by asserting the GK line through the parallel port. Note that
thisis not a standard FASTBUS operation and is provided only for single master systems without ancillary logic.

3.1.3 FASTBUS Reset Bus (RB)
The Processor can issue a FASTBUS RB (Reset Bus) signal directly through the parallel port. In this case the
parallel port GK signal should be asserted ssimultaneously. RB does not cause a processor interrupt when it is
driven by the FSCC itself.

3.1.4 FASTBUS Slave Mode Operation
The FSCC supports a limited slave mode through processor emulation. Geographical address recognition logic is
contained in hardware. All other dave functions are controlled by the processor. FASTBUS WT is asserted on
each DS transition. The data cycle response time is dependent on software and is typically 10-15 usec per
FASTBUS word.

Accessing the FSCC as a slave causes a Processor interrupt. The processor must poll the DS, MS, RD, AK, and
CSR/DATA* lines via parallel port inputs. The SS response is then placed on the bus via parallel port outputs and
a slave mode input or output operation is executed by the sequencer. The CSR/DATA* line reflects the status of
MSO0 which has been latched during the address cycle.

The two FASTBUS Slave instructions cause a single word of data to be transferred between the processor and
FASTBUS with an associated DK transition. WT is released prior to the DK transition and is reasserted on the
next DS transition. Any FASTBUS CSR or DATA location can be defined by processor software.

Novmber 1, 1995 27

FSCC Hardware Manual Version PC4b

The FSCC is limited in its ability to execute master and slave operations simultaneously, since the processor is
involved in both cases. There is normally no need for the FSCC to address itself, with the possible exception of
crate mapping. If the FSCC does address itself, the slave logic will attach (return AK) but no data cycles will be
possible. A slave mode interrupt is generated and the processor software must then recognize the simultaneous
master/d ave condition by examining the parallel port FSLV* bit. The software should bypass any FASTBUS data
cycles and retrieve the information directly from internal memory.

3.1.5 List Mode FASTBUS Operation

LIST Mode FASTBUS operation was enhanced on PC4 boards (carried over to PC4a/b modules) by adding 8 bits
to the 32-bit wide List FIFO to alow instructions to be stored in the list as well as data operands. This alows the
LIST FIFO to be used similarly to PC3 versions with the added flexibility of being able to change the instruction
list without developing special application-specific microcode. All PC4b FSCC's are assembled with generic LIST
FIFO driver microcode installed in the user microseguencer sockets on the board. This microcode works similarly
to the standard microcode except that, when enabled, it takes its FASTBUS instructions and data from the LIST
FIFO instead of the 68020 directly.

The LIST FIFO is controlled by three parallel port bits. The SRS* bit is a low true reset bit for the LIST FIFO.
To reset the LIST FIFO the SRS* hit must be pulsed low with two processor writes to parallel port 1 bit C6. The
second LIST FIFO control bit in the parallel port is the LFIFOEN bit. LFIFOEN is a high true signal which
enables the data path between the LIST FIFO and the FPORT controller (Parallel Port 2 bit A6). The third parallel
port bit controlling the LIST FIFO isthe LRT* hit (Parallel Port 2 bit BS). This bit is the low true retransmit bit to
the LIST FIFO chips. When pulsed low, it causes a previously executed list to be executed again.

The FASTBUS master operations listed in Table 10 are permitted by the PC4b LIST FIFO sequencer instruction
set. The List Mode FASTBUS instruction set description isincluded as an appendix to this document.

28 November 1, 1995

FSCC Hardware Manual Version PC4b

Table12 List Mode FASTBUSInstructions

FPORT List FIFO Base addresses for PC4b FSCC's:

LISTBASE EQU $01E00000

USRBASE EQU $01E80000

Address(HEX) FASTBUS Operation Status Code
LISTBASE+300 BUS_ARBITRATE 1
LISTBASE+004 BUS_RELEASE 2
LISTBASE+304 ADDRESS_DATA_GEOGRAPHICAL 3
LISTBASE+308 ADDRESS_CSR_GEOGRAPHICAL 3
LISTBASE+30C ADDRESS_DATA_LOGICAL 3
LISTBASE+310 ADDRESS_CSR_LOGICAL 3
LISTBASE+314 ADDRESS_DATA_BROADCAST 3
LISTBASE+318 ADDRESS_CSR_BROADCAST 3
LISTBASE+31C ADDRESS_RELEASE 4
LISTBASE+320 DATA RANDOM_READ 5
LISTBASE+324 DATA RANDOM_WRITE 5
LISTBASE+328 DATA SECONDARY_ADDRESS READ 6
LISTBASE+32C DATA SECONDARY_ADDRESS WRITE 6
LISTBASE+00C DATA BLOCK _TRANSFER_WRITE 5
LISTBASE+330 DATA BLOCK _TRANSFER_TERMINATE 5
LISTBASE+334 DATA BLOCK TRANSFER_READ 7
LISTBASE+338 DATA PIPELINED_READ 100 8
LISTBASE+33C DATA PIPELINED_READ_ 200 8
LISTBASE+340 DATA PIPELINED_READ_ 400 8
LISTBASE+344 DATA_RANDOM_READ TO LOCAL_COUNTER 5
LISTBASE+348 DATA BLOCK_READ_LEADING_WORD _COUNT 7

LISTBASE+02C
LISTBASE+044
LISTBASE+030
LISTBASE+01C
LISTBASE+034
LISTBASE+038
LISTBASE+03C
LISTBASE+040

LISTBASE+020
LISTBASE+028

LISTBASE+010
LISTBASE+014
LISTBASE+018
LISTBASE+024

TRIGGER_HOLD
TRIGGER_HOLD_WITH_HALT_REQUEST
INSTRUCTION_LIST_RE-EXECUTE
GENERATE_FPCREQ (IRQ)
POLL_HALT_REQUEST

DELAY2 (2 microseconds)

DELAY10 (10 microseconds)

DELAY100 (100 microseconds)

SEQUENCER_NULL
BULB_TEST

LOCAL_COUNTER_LOAD
LOCAL_COUNTER_READ
FIFO_WRITE_DATA
END_OF_EVENT

FB_ERROR

M M>»o00 WO WWWWWoX>WOO

The following instruction has an effect only if executed after sequencer reset and before any other instruction is
executed. If executed any other time, it has the same effect as a NULL instruction.

USRBASE+020 USER_SEQUENCER_SELECT C

Novmber 1, 1995 29

FSCC Hardware Manual Version PC4b

Initializing the LIST FIFO isdone in four steps:

1) Reset the LIST FIFO by pulsing the SRS* bit. (Recommended but not necessary if FIFO is known to be

empty).

2) Load an instruction stream into the List FIFO using the instructions in Table 12 (LFIFOEN should be
false while List FIFO isloaded).
3) Enablethe LIST microsequencer by accessing the address: FPORTUSR+020. (Only needs to be done
once after reset, must be done before any FASTBUS instructions are executed and must be done while

LFIFOEN isfalse. Hasno effect if executed more than once).

4) Enablethe LIST FIFO by setting the LFIFOEN bit true. The FPORT controller will then start executing

thelist.

ANDI.B
ORI.B

MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

MOVE.L

MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

MOVE.L
MOVE.L
MOVE.L
MOVE.L
MOVE.L

MOVE.L

MOVE.L

Sample crate readout program using the LIST FIFO:

PP1CDATA isparaléel port 1C's data register
Reset LIST FIFO.

#$BF,PP1CDATA
#$40,PP1CDATA

Load LIST FIFO with FASTBUS instruction stream.

#0,LIST_POLL_HALT_REQUEST
#0,LIST_TRIGGER_STROBE_HOLD
#0,LIST_DELAY?2

#0,LIST_DELAY?2

#0,LIST_DELAY?2

CSRS8,LIST_BUS_ARBITRATE

PRIMADDL1,LIST_ADD_DATA_GEO
SECADD1,LIST_SEC_ADD_WR
WORDCNT1,LOCAL_COUNT_LOAD
#0,LIST_FIFO_BLOCK_READ
#0,LIST_ADDRESS_RELEASE

PRIMADD2,LIST_ADD_DATA_GEO
SECADDZ2,LIST_SEC_ADD_WR
WORDCNTZ2,LOCAL_COUNT_LOAD
#0,LIST_FIFO_BLOCK_READ
#0,LIST_ADDRESS_RELEASE

PRIMADDS,LIST_ADD_DATA_GEO
SECADD3,LIST_SEC_ADD_WR
WORDCNT3,LOCAL_COUNT_LOAD
#0,LIST_FIFO_BLOCK_READ
#0,LIST_ADDRESS_RELEASE

#0,LIST_BUS_RELEASE

#0,INSTRUCTION_LIST_RE-EXECUTE

*Set LIST FIFO Reset bit true
*Clear LIST FIFO Reset bit.

*test for halt req. from CPU
*wait for a trigger
*delay 6 microseconds

*Arbitrate

*Address first slave
*Secondary address
*Load Local Word Counter
*Block read to data FIFO
*Address Release

*Address second slave
*Secondary address
*Load Local Word Counter
*Block read to data FIFO
*Address Release

*Address third slave
*Secondary address
*Load Local Word Counter
*Block read to data FIFO
*Address Release

*Bus Release

*repeat list

Enable User microsequencer (switch FPORT controller from standard microcode

30

November 1, 1995

FSCC Hardware Manual Version PC4b

* to LIST microcode).
ANDI.B #$7F,PP2BDATA *reset FPORT controller
ORI.B #3$80,PP2BDATA
MOVE.L #0,USR_SEQUENCER_SELECT *FPORT User Sequencer Select

* Enable List FIFO (List execution will start after thisinstruction is executed)
ORI.B #$40,PP2ADATA *Set PP2A hit 6 high (LFIFOEN)

The List Sequencer can continuously execute the same list repeatedly. This is done by putting an
INSTRUCTION_LIST_RE-EXECUTE instruction at the end of the FASTBUS instruction list in the List FIFO.
When the List Sequencer sees the re-execute instruction, it toggles the RETRANSMIT input to the List FIFO.
This causes the FIFO to reset itsinternal pointers, and list execution begins at the first list instruction.

To execute a graceful halt of the List Sequencer while operating in a sef re-executing list, a
POLL_HALT_REQUEST instruction may be inserted at any convenient point in the list. When executed, the List
Sequencer checks for an FPORT List Halt Request from the processor. An FPORT List Halt Request instruction is
amemory mapped CPU instruction. It isexecuting by reading this memory location (See Table 6). Execution of a
Halt_Request CPU instruction sets a status flag that the List Sequencer can test. The processor is then paused in
the middle of a cycle, waiting for an acknowledge from the List Sequencer. When the List Sequencer executes the
POLL_HALT_REQUEST instruction, the status flag is tested. If it is true, the sequencer returns the processor
acknowledge and halts. If the flag is not true, list execution continues at the next instruction. If the
POLL_HALT_REQUEST instruction is not executed within the Long Timer timeout period, then a 68020 Bus
Error Exception will result. If asecond FPORT List Halt Request instruction is executed after the List Sequencer
has already been halted, it does not return an acknowledge and a Bus Error Exception occurs. A Bus Error
Exception will also result if a Halt_Request CPU instruction is executed and the FASTBUS Sequencer is not in
List mode.

3.1.6 Data Transfer Description and Transfer Rates

The FSCC supports FASTBUS Pipelined Transfer rates of 100, 200 and 400 nsec per word. At the 100 nsec per
word rate, End-of-Block is not normally returned in time to avoid another DS transition. Therefore, Pipelined
transfers at 100 nsec may read one word beyond the end of block and this word will be included in the output data
stream.

The FSCC also supports Block Transfersat arate of ~150 nsec per word. The actual transfer rate will be 100 nsec
plus the slave DS-DK response time, rounded to the next highest 50 nsec increment.

Block and Pipelined Transfers directed to the Data FIFO are functional for Read mode only. Datais placed in the
FIFO and is not accessible to the Processor. However, data can be simultaneously routed to the Processor FIFO by
setting the COPYEN bhit in the parallel port. A Block Transfer Read/Write instruction for Processor memory is
available, but operates at the same speed as single word Processor read and write operations. It implements one
step of the block transfer for each processor MOVE instruction executed. The processor memory block transfer
must be terminated with aDATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction.

Although the Data FIFO is limited to blocks of 4094 on PC4b boards, larger blocks can till be transferred
provided that the destination is capable of interpreting a word count of 4094 as a partial transfer. For block
transfers which are some exact multiple of 4094 words, afinal block of length zero must be transferred.

Novmber 1, 1995 31

FSCC Hardware Manual Version PC4b

3.1.7 Internal Control and Status Registers

All Control and Status Registers related to FASTBUS operation are implemented in 68020 software. The number
of registersislimited only by available processor memory.

3.1.8 Error Responses

The FPORT Controller latches FASTBUS error conditions but does not attempt any recovery or retry. A processor
interrupt is generated and the processor has the option of attempting recovery or, more likely, skipping the entire
readout sequence. Because of interna pipelining, errors may not be reported immediately with the bus cycle
generating the error. Also, the amount of status information available to the processor is limited.

The standard FASTBUS instructions will abort on errors and return to the processor with an interrupt. The
Standard microcode currently sets an error flag in the header word of the current event to indicate that the
FASTBUS event readout failed and the data should be discarded. Note that an End-of-Event instruction must be
executed before the FASTBUS error is cleared in order for the bad event to be output with the bad event flag set.
If outputting the bad event is not desired, the data FIFO's and the Output Port Controller may be reset to flush the
event. The FPORT Controller does not have the ability to test status flags in slave modules to locate problems, so
error recovery through microcode is generally limited to reset and continue type operations.

If aFASTBUS error occurs during a readout using the Instruction List FIFO, the bad event flag is set in the header
word (word count word), and the data is immediately output. Any further readout of this event is not attempted.
The List microcode then clears the FASTBUS error flag, and continues on with the next list instruction. The bad
event flag is bit 17 of the first word (word count word) of the data stream.

3.2 Ethernet

The INTEL 82586 LAN coprocessor performs message framing management in transmission and reception
functions. It acts as a bus master, accesses memory by DMA, carries out message error checking, collision
recovery functions, etc. The INTEL 82C501 Ethernet Serial Interface (ESI) implements Manchester
encoding/decoding and clock recovery. ESI functionality may be checked by the processor using Loopback mode.
The National DP8392 Ethernet Transceiver performs collision detection and interfaces to the coaxial cable.

3.2.1 Ethernet Interface

The INTEL 82586 coprocessor interfaces indirectly to the 68020 CPU system through a 4K by 16 bit dual ported
memory. Figure 4 isaBlock Diagram of the Ethernet Interface.

The dual port RAM speeds up both systems as the processor does not release the bus each time a DMA occurs,
and controller bus latency is reduced to zero.

Direct interface is provided with CA (Channel Attention) and IRQ (Interrupt Request) lines. The 68020 CPU
drives CA to get the attention of the controller, indicating that new commands were included in the command list
to be processed.

The 82586 Ethernet controller uses IRQ to interrupt the processor when a command is complete or upon message
reception.

L oop-Back mode through the 82C501 can be enabled by writing to the Loop-Back enable register, and disabled
by writing to the Loop-Back disable register (see Table 6). Loop-Back through the 82C501 is also disabled by
Reset.

32 November 1, 1995

FSCC Hardware Manual Version PC4b

The shared DPRAM structure is composed of four parts. The Initialization Root, the System Control Block
(SCB), the Command List and the Receive Frame Area (RFA). The Initialization Root is fixed in memory. The
Ethernet controller addresses that variable as $FFFFF6, but in fact, due to the partial decoding, its physica
location is DPRAMBASE+$1FF6. The base address of the DPRAM from the CPU side is listed in Table 6, and
is $0000 from the Ethernet controller. Transmission and reception messages are split into small buffers to better

use the available memory. The buffers, when necessary, are chained in frames. Transmission and reception
buffer descriptors are accessible through the SCB table pointers.

CA IRQ5 —
Al/]i iDZ-E 68020 Bus
o DPRAM A
D015 DB16-31
CONTROL —
PALS 2Kx16
RMW o
\ oE
HOLD - CS
Si -
5 .
BUSY _
ETHERNET
CONTROLLER
- BUSY
=
z
ADD/DATA BUS
Y
. Al12 . ﬁJZ-g
" | ADDREsS DPRAM
LAT CH DO/15 DBO-15
2Kx16
RIW
xE
cs o

Figure4 Ethernet Interface Block Diagram

3.2.2 Ethernet Controller Interface

The interface between the Ethernet controller and the dual ported RAM uses a 16-bit address latch implemented in
74Fxx series logic to demultiplex the Address and Data lines, and a state machine implemented in two 22V10
PALs to control the memories and the latch. The state diagram is shown in Figure 5. The PC4/a/b interface and

the PC3 interface are functionally identical from both the point of view of the 68020 and of the 82586, so software
for the two interfacesis the same.

Novmber 1, 1995 33

FSCC Hardware Manual Version PC4b

3.2.3 Timing Diagrams

The Ethernet controller was designed to share an external bus, it asserts a HOLD line to keep the bus when
performing burst memory cycles. In this implementation the controller has a private bus to the DPRAM, so hold
acknowledge HLDA is returned instantaneously, and the state machine goes directly to IDLE to wait for the
beginning of acycle.

S1 and SO, from the Ethernet controller indicate the type of cycle the 82586 is attempting: S1=0, SO=1 is a read
cycleand S1=1, SO=0is awrite cycle. Thoselines are driven only during T1 and T2. The interface state machine
has a separate path for write and read operations.

Figure 6 and Figure 7 show timing diagrams for 82586 read and write cycles.

Write Cycle

Read Cycle

R BUSY,
BUSY,

BUSY

\4 BUSY

BUSY

Figure5 Ethernet Controller State Diagram

34 November 1, 1995

FSCC Hardware Manual Version PC4b

T—— — = —

DATA

A/D 0-15

ADD 1-12,

Figure6 Ethernet Controller Read Cycle

35

Novmber 1, 1995

FSCC Hardware Manual Version PC4b

T4

T3
|
|
|

12

ir2
1

10

1TO

. 15"

, 14

——
B
e I [
L — =
S
= <
N @) >
-4 L __d_1_Lg-d_d_L__|lc_-_-__1l______4d_-__
-]
— <]
I\ —
I
||/l.-||||||||.-||||||||-||||||||M_r |||||||||
L =
— 0
0]
i
- — :
0| =5
<
- S e o [S e o S [e —
N
N —
T~ —
T—
B
- 1 - — - - - |- = — - L - -4 - -4 - - |- -1 - - - -4
Ln N 0 -
by o I W o 3 |8
_\ 15 ® 2 2 © 2 2 o
- a @
< < o

Figure7 Ethernet Controller Write Cycle

November 1, 1995

36

FSCC Hardware Manual Version PC4b

3.3 Description and Operation of OUTPUT PORT (OPORT)

The basic function of the Output Port Controller (OPORT) is to provide a continuous stream of data with strobes
for transmission via RS-485 buffers on the auxiliary card. A Block diagram of the Output Port is shown in Figure
8. For this application, it need only multiplex the Control FIFO and Data FIFO outputs and generate appropriate
timing. The control FIFO contains the H& C Word (Word Count and Header bits), and the data FIFO contains the
event data stream. When End-Of-Event is received from the FASTBUS controller, the OPORT controller pulls
one word out of the control FIFO and outputsit. It then pulls data words out of the data FIFO until the Data End-
Of-Event word (Event Delineation flag) is seen at the Data FIFO output. Connection to more complicated external
bus formats will require reprogramming of the OPORT Controller or addition of a more sophisticated sequencer on
the auxiliary card.

All levels at the output port are single ended TTL. Level adapters to different protocols will be mounted on the
FASTBUS auxiliary card. The data path is 32 bits wide. Two control lines are provided to regulate data flow: the
WAIT input pauses the OPORT and STROBE is a synchronous data strobe output.

In some applications the auxiliary bus (OPORT data cable) will be common to several FSCC modules. The
PERMIT_IN and PERMIT_OUT front panel connections provide a "token passing” mechanism for enabling and

disabling data output. The first FSCC in the token chain is designated “first” by setting the appropriate OPORT

mode (see Table 13). Permit_Out of the “first” FSCC is connected to Permit_In of the next FSCC in the chain.
Permit_Out of this module is connected to Permit_In of the next, and so on. Permit_Out of the last module in the
chain is connected to Permit_In of the first module. Each FSCC in the permit chain must have its OPORT
configured in the appropriate mode for its position in the permit chain (first, middle, or last).

To use a single FSCC by itself on a data cable, the OPORT is configured to be “Only” (see Table 13).

The OPORT Controller performs arbitration and control for the Data and Control (Word Count/Header) FIFO
outputs. The operating mode is selected by the processor. PC4a/b FSCC's are equipped with an OPORT
controller which has a user programmable output rate. Rates of 10 MHz, 6.67 MHz, or 5.0 MHz can be software
selected (Table 13).

Novmber 1, 1995 37

FSCC Hardware Manual Version PC4b

3.3.1 OPORT Controller Operating Modes

Bits 2-0 in the OPORT Control register Select one of eight possible OPORT operating modes.
Table13 OPORT Controller Operating M odes

Mode Hex-Code Function
Disabled $00 OPORT isoff-line. Outputs are tri-stated.
Token_Middle $01 OPORT outputs a header and the event data upon receipt of a PERMIT_IN

signal. Thismodeis usually used for amiddle FSCC in atoken passing chain.
PERMIT_IN must be received before data is output, and PERMIT_OUT is
generated after outputting an entire event. The EOR output driver is disabled in
this mode.

Token_First $02 OPORT outputs a header and the event data with no PERMIT_IN required for
the first event after configuration. Subsequent events require a PERMIT_IN
before output begins. This mode is usually used for the first FSCC in a token
passing chain. The EOR output driver is disabled in this mode.
PERMIT_OUT is generated after outputting an entire event.

Token_Only $03 OPORT outputs a header and the event data with no PERMIT_IN required. This
mode is used when there is only one FSCC on a data cable, and token passing
is not needed. The EOR output driver is enabled in this mode. EOR is driven
true for ~150ns after each event has been output. PERMIT_OUT is generated
after outputting an entire event.

Rate Select $04 Selecting and then deselecting (set to mode 0) this mode causes the OPORT
controller to output data at a 6.67 MHz rate. Selecting and then deselecting this
mode twice causes the OPORT controller to output data at a 5.0 MHz rate.
Output rate is reset to 10 MHz by resetting the OPORT controller. The datarate
set can be checked by reading the OPORT status code when the OPORT is in
RESET state. OPORT status codes are listed in Table 15.

reserved $05 Same as mode 0.
reserved $06 Same as mode 0.
Token_Last $07 This mode is identical to Token_Middle mode except that the OPORT controller

drives the End_Of Record signal true for ~150ns after the last data word has
been output, and before the PERMIT_OUT pulse is sent. This mode is usually
used for the last FSCC in a token passing chain. The EOR output driver is
enabled whenever Token Last modeis set.

Token_Middle: Thisisthe normal data taking mode for a board in the middle (neither first nor last) of the token
passing chain. Data is transmitted to the output daughter card with synchronous, no handshake protocol at the
selected data rate. The data contains a non-inclusive leading word count, (the lower order 12 bits). Bits 12-16 of
this word contain a processor programmable header, usually the Trigger 1D, and bit 17 is an error flag. When the
error flag is high, this indicates that the FSCC encountered a FASTBUS error during the read out process, and the
data may be bad or incomplete. Bits 18-31 of the control word are undefined. When in Token_Middle mode, the
OPORT controller waits until the PERMIT_IN pulse has been received. Then the controller waits for a control
word (Header/Word Count) to be loaded into the control FIFO. After these two conditions have been met, data
transmission begins. The header word from the control FIFO (CFIFO) is transmitted first, followed by the
specified number of words from the data FIFO. Transmission ends when the End-Of-Event data word is
encountered. This word is inserted into the data FIFO by the FASTBUS controller when an End-Of-Event
instruction is executed (See FPORT Controller Instruction Set). The OPORT Controller then outputs a PERMIT
OUT pulse, and disabled its outputs. Wait states can be inserted to slow data transmission by software commands
to the OPORT controller. Three different data rates are implemented, the default rate is 10 MHz which provides
40 MBytes per second. The other two user selectable rates are 6.67 MHz, and 5.0 MHz, providing 26.68 MBytes
per second, and 20 MBytes per second respectively. Either of the two optiona data rates can be selected by

38 November 1, 1995

FSCC Hardware Manual Version PC4b

toggling the OPORT controller into Rate Select Mode (see Rate Select Mode). Refer to Figure 10 for an example
of Output Port timing in Token_Middle mode.

Token_First: This mode isidentical in function to Token_Middle with the exception that the OPORT controller
does not wait for a PERMIT_IN pulse before outputting its first event after configuration. A PERMIT_IN token
must be received before any subsequent events can be output. This mode is generally used for the first FSCC in
the token passing chain. Typicaly, the Permit Out output of the last board in a token passing chain, will be
connected to the Permit In of the first board in the chain. The first board in the chain will be set in Token_First
mode. After system reset and configuration (assuming appropriate readout code is running), the first readout
trigger will cause the first board in the chain to readout its crate, output its event, and pass the token. The first
board will then wait until it receives the token from the last board, before outputting another event.

Token_Last: This modeisintended for use when the FSCC is placed at the end of the token passing chain. This
mode is functionally equivalent to Token_Middle, except that upon completion of the data transfer, the OPORT
drives the End Of Record output true for 150 ns, before outputting the Permit Out pulse. The EOR output driver is
enabled whenever Token_Last modeis selected.

Token_Only: This mode is intended to be used when the FSCC is the only data source on a data cable. In
Token_Only mode, the OPORT is operating as “First” and “Last” in the permit chain. Actually, PERMIT_IN is
ignored. Data is always output as soon as an End_Of_Event instruction is executed. End_Of_Record is driven in a
similar manor to Token_Last mode.

Rate Select Mode: The default output rate of the OPORT is 10 MHz. Each time Rate Select Mode is selected,
the OPORT reduces its output rate by one step. First from 10 MHz to 6.67 MHz, then from 6.67 MHz to 5.0 MHz.
To set the OPORT into 6.67 MHz mode, Rate Select Mode is selected. The OPORT is then set in the desired
output mode. All subsequent data transfers out of the OPORT will then be at a 6.67 MHz rate until the OPORT is
reset. To reduce the rate to 5.0 MHz, Rate Select Mode must be selected twice. To do this, Rate Select Mode is
first selected. Mode 0 is then selected, and Rate Select Mode is selected again. One of the output modes may now
be selected. Data transfers will now be at 5.0 MHz until the OPORT is reset.

Refer to Figure 9 for a state transition diagram of the OPORT Controller. At power up or RESET, the state
machine is in RESET state. A Rate Select command will cause the next lower speed state machine to be selected.
The 10 MHz, 6.67 MHz, and 5.0 MHz state machines function identically with the exception of either one or two
wait states inserted into the data outputting loop. Receipt of a Token_First or Token_Only mode selection, takes
the controller directly to IDLE, while a Token_Middle or Token_Last mode selection puts the controller into
PINWAIT. A PERMIT_IN will then take the controller from PINWAIT to IDLE. As soon as the control FIFO

has a word in it, the controller will move from IDLE to SETUP state. In SETUP state the control FIFO is read,
and the Mode Group select (MG_SEL) output is driven. The MG_SEL output going true, causes the OPORT’s
CPU interface to provide a second set of Mode inputs to the OPORT controller. The OPORT controller then looks
at the second mode group inputs to see if the Suppress Zero Event mode is selected. If SZE mode is selected, this
means that the SZE bit is set, and the next event in the Data FIFO has no data in it (a Null event). The OPORT
controller then discards the control word, and proceeds to CHKMODE state. If SZE mode is not true, the
controller continues on to LATCH1 state where the control word is latched, and then to STROBE state where it is
strobed out of the port. The state machine then toggles between STROBE, and LATCH2 clocking data out of the
data FIFO, and strobing it out the OPORT. LATCH2 state watches for the Event Delineating flag coming out of
the Data FIFO, and breaks out of the loop when it becomes true. CHKMODE checks to see which mode is set to
determine how to terminate the OPORT operation. If Token_Last mode is selected, DEOR state is executed which
drives the End Of Record output true for 150ns. All other modes cause the state machine to go to PERMOUT state
which drives the Permit Out line true for 300 ns, and then disable its output drivers. The state machine then
proceeds to PERMIN2 state and waits for either a PERMIT_IN token, or a mode change to occur.

Novmber 1, 1995 39

FSCC Hardware Manual Version PC4b

4@ Permit In

To Processor P i
4@) ermit Out
K<—@
8 OPORT ®
() Interface
DB24-31
OPORT SELECT*
READ/WRITE* To FASTBUS
_, STATUS 4 Auxiliary Connector
ADL A RESET
LDS* STROBE
IRQ* MODE 3 OPORT
Controller WAIT
DFIFO READ*
DFIFO EMPTY* | EOR
EOE FLAG
CFIFO READ*
CFIFO EMPTY*
CLR CLK
From Header and Counter 18
Count) Control
FIFO Latch
CFIFO Write* (CFIFO)
32
<) DATA)
From FASTBUS Port Controller
DATA Data FIFO 32

FCLK

Figure8 Output Port (OPORT) Block Diagram

November 1, 1995

FSCC Hardware Manual Version PC4b

w a

c,d

Note: 6.67Mhz, and 5.0 Mhz state
machines are identical to the 10Mhz
state machine except that they have
wait states inserted between the
STROBE and LATCHx states as
neccessary to provide the desired
output data rate.

b

STROBE

(=3

a,b

Figure9

Output Port (OPORT) State M achine Diagram

Novmber 1, 1995

41

FSCC Hardware Manual Version PC4b

3.3.2 PC4b OPORT State Machine Pseudo Listing

RESET:

PERMINI:

IDLE:

SETUP:

LATCHLI:

STROBE:

LATCH2:

CHKMODE:

a)
b)

0)
d)

a)

b)
©)

IF mode=rate select THEN GOTO RESET 6.67

EL SEIF mode=Token First

OR mode=Token Middle and PERMIT_IN

OR mode=Token_Last and PERMIT_IN

OR mode=Token_Only

THEN status=1 GOTO PERMIN1

EL SEIF mode<>Disabled THEN status=1 GOTO RESET
ELSE GOTO RESET

IF/PERMIT_IN

OR mode=Token_First

OR mode=Token_Only

THEN status=2, Strobe driver enabled GOTO IDLE

EL SEIF mode=disabled THEN status=0 GOTO RESET
EL SE status=1 GOTO PERMIN1

IF mode=disabled THEN status=0 GOTO RESET

EL SEIF CFIFO not empty THEN status=3, data drivers enabled, strobe driver enabled, CFIFO read
group select 1 GOTO SETUP

EL SE status=2, data drivers enabled, Strobe driver enabled, Clear Output Data Latch, GOTO IDLE

status=3, latch data, Data FIFO read, data drivers enabled, Strobe driver enabled, group select 1

CONTINUE

status=3, Data FIFO read, datadrivers enabled, Strobe driver enabled, group select 1 GOTO LATCHL1

a)
b)
©)

d)

IF wait THEN status=4, Data FIFO read, data drivers enabled, Strobe driver enabled, group select 1
GOTO LATCH1

ELSEIF mode=Suppress Zero Event THEN status=3, data drivers enabled, Strobe driver enabled,
CONTINUE

ELSEIF DataFIFO empty THEN status=5, Data FIFO read, data drivers enabled, Strobe driver
enabled, group select 1 GOTO LATCHL1

ELSE status=3, Data FIFO read, Data Strobe, data drivers enabled, Strobe driver enabled

GOTO STROBE

status=3, data drivers enabled, Strobe driver enabled GOTO CHKMODE

a)
b)

a)
b)

©)

d)

a)

b)

IF mode=disabled THEN status=6, |latch data, data drivers enabled, Strobe driver enabled
GOTO STROBE
ELSE status=3, latch data, data drivers enabled, Strobe driver enabled GOTO LATCH2

IF wait THEN status=4, data drivers enabled, Strobe driver enabled GOTO LATCH2
ELSEIF DataFIFO empty THEN status=>5, data drivers enabled, Strobe driver enabled
GOTO LATCH2

ELSEIF end of event flag THEN status=3, datalatch clear, data drivers enabled,
Strobe driver enabled GOTO CHKMODE

ELSE status=3, data strobe, Data FIFO read, data drivers enabled, Strobe driver enabled
GOTO STROBE

IF mode=Token_First OR Token_Middle THEN status=3, Data FIFO read, Strobe driver enabled
GOTO PERMOUT
ELSE status=3, Data FIFO read, Strobe driver enabled JUMP DEOR

42

November 1, 1995

FSCC Hardware Manual Version PC4b

DEOR: status=3 CONTINUE
status=3, end_of record CONTINUE
status=3, end_of record CONTINUE
status=3, end_of record CONTINUE
status=3, end_of _record GOTO PERMOUT
PERMOUT: status=3 CONTINUE
status=3, PERMIT_OUT CONTINUE
status=3, PERMIT_OUT CONTINUE
status=3, PERMIT_OUT CONTINUE
status=3, PERMIT_OUT CONTINUE
status=3, PERMIT_OUT GOTO PERMIN2
PERMINZ2: a) IF PERMIT_IN
OR mode=Token_Only
THEN status=1 GOTO PIN2
b) ELSEIF mode=disabled THEN status=0 GOTO RESET
c) ELSE status=1 GOTO PERMIN2
PIN2: a) IF/PERMIT_IN
OR mode=Token_Only
THEN status=1, Strobe driver enable GOTO IDLE

b) ELSEIF mode=disabled THEN status=0 GOTO RESET
c) ELSE status=1 GOTO PIN2

3.3.3 OPORT input/output signals

The processor can control and monitor the OPORT through the eight bit OPORT interface. The following signals
are used to configure and monitor the OPORT.

RESET: This asynchronous line connects directly to the OPORT controller’'s hardware reset line. When
held in reset, (low = reset) the OPORT controller disables its output drivers, ignores Permit tokens
and mode selections.

MODE 2-0: OPORT Controller mode select lines.

The OPORT controller drives the following output lines to indicate status conditions to the processor:

MG_SEL: This line is used by the OPORT Controller’'s CPU interface to select which mode select group it

should provide to the OPORT controller. By using the MG_SEL line in this way, the mode inputs
to the OPORT controller are multiplexed to allow up to 16 modes to be defined instead of eight.

Novmber 1, 1995 43

FSCC Hardware Manual Version PC4b

SM (0-3): Return the OPORT state machine status.

External interface:

PERMIT_OUT: Enable next device onto the token passing logical ring.

PERMIT_IN: Indicates the token has been received. Thisinput isnot laiched. The OPORT controller must be
initialized (set to an event mode) before it can recognize a Permit In.

STROBE: Signals active data on the pipeline latches, the rising edge is used to strobe that data into the
personality card. Current personality cardsinvert the Strobe signal before using it to drive the
RS-485 Strobe output.

WAIT: Pauses data transmission when true. WAIT islow true.

The OPORT is controlled from the CPU by programming the 8-bit control register in the OPORT interface. Refer
to Output Port Controller interface for programming codes and status conditions.

3.3.4 OPORT Controller Interface

The output port controller interface (OPO_INTF) allows the CPU to control and monitor the output port
microsequencer (OPORT). The CPU sets up the OPORT in one of the 8 defined modes and receives OPORT
status information. The OPO_INTF can aso drive an interrupt to the CPU system under some OPORT
conditions.

Configuration:

The OPO_INTF is a byte wide port in the 68020 memory map. Itsinternal architecture consists of one control and
two status registers. Commands are sent to the OPORT controller through the Control Register. The OPORT
defined commands are: Set Mode, OPORT Reset, and Enable PERMIT_IN Interrupt. Register bit definitions are
defined in Table 14. Refer to Figure 2 for the OPORTS base address.

Table14 OPORT CPU Register Definitions

Address Write Function Read Function
OPORTS+0 None Status register 1
b0-b3: OPORT Status
b4: Control FIFO Status
b5 Permit_Inlineflag
b6: undefined
b7 undefined
OPORTS+1 Control register Status register 2
b0-b2: OPORT Mode b0-b2: OPORT Mode
b3: OPORT hardware Reset (1=reset)| B3: OPORT hardware Reset
b4: undefined b4: Permit_Out flag
b5: undefined b5: undefined
b6: Permit_In_Mask b6: Permit_In mask
b7 Suppress Zero Events (SZE) b7 Suppress Zero Events (SZE)

The software reset has the same effect over the OPORT as the hardware reset. The OPORT goes to the power on
reset state, and the control FIFOS are cleared. The mode lines are cleared during a reset operation until a
command word is written to the OPORT command register.

Note: When the Reset bit is set in the OPORT Control register, the OPORT Controller remains in Reset condition
until the bit is cleared.

44 November 1, 1995

FSCC Hardware Manual Version PC4b

The interrupt condition is also reflected in the status registers, along with the OPORT state machine status. A
latched version of the PERMIT _IN signal is available to the processor in OPORT Status Register 1. A read from
thisregister clears the interrupt flags, and the PERMIN latch.

Table15 OPORT Status Code Definitions

Status Code Meaning
Hold/ldle 10 MHz (no mode set, OPORT is off line)
Waiting for Permit In
Waiting for End Of Event from FPORT
Transmitting Data
Waiting (OPORT Wait input is true)
Waiting FSCC Data FIFO is empty
Output paused by user
-13 reserved
4 Hold/ldle 6.67 MHz (no mode set, OPORT is off line)
5 Hold/ldle 5.0 MHz (no mode set, OPORT is off line)

PRP~NOORAWNEO

Control FIFO Statusbit

This bit reads as a 0 when the Control FIFO is empty, and as a 1 when the Control FIFO is not empty. Reading

this bit allows the 68020 to see if there are any complete events queued in the FSCC'’s data FIFO’s. The Control
FIFO Status bit will be a 1 after an End Of Event instruction has been executed, and before the OPORT starts
outputting the event. This will be true if the PERMIT IN token has not been received, or the OPORT is busy
outputting a previous event.

Permit In Flag
This bit reads as a 1 when the Permit_In Mask bit is set, and after a Permit In pulse is received. The Permit In
Flag latch is cleared by reading OPORT Status Register 1, or resetting the OPORT controller.

OPORT Mode0-2
These three bits select the OPORT Controller’'s operating mode.

OPORT Reset

This high true bit (1=reset) maps directly to the OPORT Controller's hardware reset pin. Setting this bit high
places the OPORT controller into reset. The bit must be cleared to take the OPORT controller out of reset before a
mode can be set.

Permit_In_Mask

This bit enables the Permit In flag in OPORT Status Register 1, and also the AUXREQ interrupt (GPIP2). If
desired, receipt of a Permit In can generated a processor interrupt, if the Permit_In_Mask bit is set, and GPIP2 is
enabled in the 68901 interrupt controller.

Suppress Zero Events (SZE Bit)

Setting this bit causes the OPORT to suppress output of zero word events. If the Data FIFO contains a Null event
(no data) when an End_Of_Event instruction is executed, the OPORT controller will normally generate a Word
Count/Header word (with the word count value of zero), and output this one word before passing the token. In
some systems, it is desirable to reduce the amount of meaningless data collected, such as an event of word count
zero. PC4b modules are equipped with a feature to allow suppression of the output of these zero word events.
When the SZE bit is set to a one, and an End_Of_Event instruction is executed with an empty Data FIFO, the
OPORT controller detects the zero word event, and passes the token without outputting the zero valued Word
Count/Header word. The SZE feature has no other effect on operation of the OPORT controller, and it works in a
similar manner regardless of output rate setting, or OPORT mode setting. After Reset, the SZE bit's default state
is zero (SZE disabled).

Novmber 1, 1995 45

FSCC Hardware Manual Version PC4b

3.3.5 OPORT Output Waveforms

+
L L L | L
Current Sample Period = 4.000 ns
l Mext Sample Period = 4.000 ns
=l o
Acquisition Time
03 Oct 1993 12:358:23

1 L
STB_AC : Strobe at input to RS-485 driver on FSCC-DARTAC card.
STB_MB = Strobe on Main Board at FASTBUS Auxiliary Connector.

OPORT Mode = Mode 1 (Token_Middle)

Figure10 Output Port Token_Middle Analyzer Picture

Figure 10 is a Logic Analyzer snap-shot of a six word event as output through the Output Port (OPORT). The
OPORT is configured in Token_Middle mode in this example. While waiting for the token (PERMIT_IN), the
OPORT controller reports Status = 1 (Waiting for Permit). The Rising edge (the rising edge is the trailing edge,
the falling edge is not shown) of PERMIT_IN causes the OPORT to enable the Strobe RS-485 driver (STB_OE
goes true) and report Status = 2 (Waiting for End_Of _Event from FPORT). Since End_Of Event has previously
been executed by the FPORT controller, Status = 2 is only transitory as the OPORT controller begins outputting
data. One cycle (50ns) after enabling the Strobe RS-485 driver, the data RS-485 drivers are enabled (DATAOE
goes true), and the OPORT controller issues Status = 3 (Outputting Data). The first word out of the port is the
header, containing the word count, error bit, and header bits. The header is zero, the low true Bad Event bit (bit
17) is high, and the undefined bits 18 through 31 are high in this example. The undefined bits in the Header/Word
Count word are not guaranteed to be in aknown state. Dataisvalid on the falling edge of Strobe. WAIT isdriven
true by the receiving module during the third data word. The output is paused during the fourth data word, and
Status = 4 (Waiting due to WAIT true) isissued. Data Strobe goes true for word four after the OPORT controller
sees WAIT go inactive. Status = 3 is again issued. After the last word in the event is output, the data RS-485
drivers are disabled, then the Strobe RS-485 driver is disabled. PERMIT_OUT is output to pass the token to the
next FSCC (or other DART data source) in the token passing chain. Status = 1 is then issued. The EOR RS-485
driver isdisabled in Token_Middle Mode.

46 November 1, 1995

FSCC Hardware Manual Version PC4b

X \ \ L L

e e e

STB_AC ::Strd,be at input to RS-485 Driver on FSCC-DARTAC card.
I 1

STB_MB = Strabe on Main Board at FASTBUS Auxiliary Connector.

OPORT Mode

Figure1l Output Port Token First Analyzer Picture

Figure 11 shows a small event being output in Token First mode. This mode is similar to Token_Middle mode
above, with the exception being that the event is output without waiting for PERMIT_IN the first time after

configuration.

The internal FSCC signal DATCLK is aso shown in this figure. DATCLK is the clock signal to the output data
latch. The output data latch is clocked by the rising edge of this signal. The data can be seen changing shortly
after therising edge of DATCLK.

Novmber 1, 1995 47

FSCC Hardware Manual Version PC4b

+
L \ L L L=
Current Sample Period = 4.000 ns
Mext Sample Feriod = 4.000 ns
el
Acquisition Time
05 Oct 1993 15:533:04

STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.
STB_MB = Strobe on Main Board at FASTBUS Auxiliary Connector.
OPORT Made = Mode 7 (Token_Last)

Figure12 Output Port Token_Last Analyzer Picture

Figure 12 shows the Output Port operating in Token Last mode. In Token_Last mode, the port functions similarly
to Token_Middle mode described above, except that the End_Of _Record (EOR) signal is generated. The EOR
RS-485 driver is also enabled (EOR_OE is true) whenever the OPORT isin Token_Last or Token_Only modes.

48 November 1, 1995

FSCC Hardware Manual Version PC4b

+
L L L | L
Current Sample Period = 4.000 ns
Mext Sample Period = 4.000 ns
=l SR
Acquisition Time
05 Oct 1993 16:05:23

STB_AC = Sétrobe at input to RS-485 driver on FSCC-DARTAC card.
STB_MB = S;Trobe on Main Board at FASTBUS Auxiliary Connector.
OPORT Mocie = Mode 3 (Token_Only)

Figure 13 Output Port Token_Only Analyzer Picture

In Figure 13 Token_Only mode is shown. This mode is similar to Token Last mode, except that the OPORT
Controller does not wait for PERMIT_IN before beginning the data transfer. The EOR RS-485 driver is enabled
(EOR_OE istrue) and EOR isdriven in Token_Only mode.

Novmber 1, 1995 49

FSCC Hardware Manual Version PC4b

Elpl 3. 1 2 3
STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.
STB_MB = Strobe on Main Board at FASTBUS Auxiliary Connector.
OPORT Mode = Mode 2 (Token_First) (6.67 Mhz output rate)

Figure 14 Output Port 6.67 MHz Analyzer Picture

Figure 14 shows the OPORT in Token_First mode after having previously been configured to output data at a 6.67

MHz rate (150ns per 32-bit word). Wherever the status reported to the processor would have been zero if
configured to output at a10MHz rate, it is hex E (decimal 14) in 6.67 MHz mode.

50

November 1, 1995

FSCC Hardware Manual Version PC4b

(((CF (R

L e e e |

STB_AC = Strobe at input to RS-485 driver on FSCC-DARTAC card.
STB_MB = Strobe at Main Board FASTBUS Auxiliary Connector.

OPORT Mode = Mode 2 (Token_First) (5Mhz output rate)

Figure15 Output Port 5.0 MHz Analyzer Picture

Figure 15 shows the OPORT in Token_First mode after having previously been configured to output data at a 5.0
MHz rate (200ns per 32-bit word). Wherever the status reported to the processor would have been zero if
configured to output at a10 MHz rate, it is hex F (decimal 15) in 5.0 MHz mode.

3.3.6 OPORT Auxiliary Parallel Port
PC4b FSCC's have seven TTL lines connecting the personality card to the processor, in addition to the five control
lines which connect directly to the OPORT Controller. The seven lines are connected to the 68020 via an EPLD.
Currently this device is programmed to drive these seven lines as parallel outputs from an eight bit parallel port
(see PARLLS in Figure 2). Note that currently available personality cards do not use the OPORT Aux. lines.
Table 16 shows the bit definitions for the OPORT AUX. port. Pin assignments for the OPORT AUX. lines are
shownin Table 4.

Table16 OPORT Auxiliary Parallel Port Bit Definitions

Address Write Function Read Function
PARLLS+0 OPORT Aux. Output Latch OPORT Aux. Input Register
b0-b3: OPORT Aux. bits0 - 3 b0-b3: OPORT Aux. hits0 - 3
b4: reserved b4: reserved
b5-b7: OPORT Aux. bits5-7 b5-b7: OPORT Aux. bits5- 7

Novmber 1, 1995 51

FSCC Hardware Manual Version PC4b

3.3.7 Header and Event Counter Control System (H&C Controller)

3.3.7.1 Header and Counter (H&C)

g
D0/D8 0
I68020 DB16-31 ; E
H CSEL* o o '-('5
R/W* - H&C — =
CONTROLLER
AD1 - OUTPUT PORT DAT]
TRIGGER_ID 0-3
= | (Global Word |-CFIFOWRITE
Counter & CFIFORESET
EOE Header Latch)
FCLK B -
g -
D9/D16
@]
L
LL
O
EMPTY FLAG
_ CFIFO READ

Figure16 Header And Counter Block Diagram

The H& C system keeps a crate wide total count of 32-bit data words written into the Data FIFO. This “Global

Word Counter” (GWC) includes data read from FASTBUS, and data written directly into the Data FIFO by the
processor. The header is a 5-bit word which is either loaded by the processor, or loaded directly by the Trigger
Input port into the Header Field. The 12 bit word counter is incremented by one, for each word transferred into the
Data FIFO via a clock signal (FCLK) coming from the FASTBUS controller. When an End Of Event instruction

is executed by the FPORT controller, the 5 header bits, the 12 counter bits, and the Bad Event bit (O=bad,1=0K),
are packed into one 32-bit word and pushed into the Control FIFO. The Counter is then automatically reset to be
ready for the next event. This H&C word then becomes the first word in the next data block to be transmitted out
of the OPORT. The separate Control and Data FIFO’s are necessary, since the FSCC does not know how many
data words there are, until it is finished counting them as it reads them out of the front-end modules. Even though
the H&C word is the last piece of data in a data block to be generated, it must go to the head of the line, to be
output first. Therefore, the H&C word cannot go into the Data FIFO since it would then be after the data, and it
would be output last. With the separate Control FIFO, the H&C word can be pulled out of the Control FIFO and
output first, then the data can be clocked out of the Data FIFO to be output next.

31 1817 16 12 11 0

Undefined Header Global Word Count

Bad Event Bit
Global Word Count and Header Word (H& C Word)

52 November 1, 1995

FSCC Hardware Manual Version PC4b

PC4b boards are equipped with a feature which allows the Trigger ID from the Front Panel Trigger Input port to be
written automatically into the four least significant bits of the Header field. This feature eliminates the need for
the 68020 to read the Trigger ID out of the Trigger port, and then write the value into the Header register. The
default configuration for the Header, is that the 5 Header Register bits are written into header field of the header
word upon execution of an End Of Event instruction. If the ETH (Enable Trigger in Header) bit is set in the H&C
Control register, the Trigger ID bits clocked into the Front Panel Trigger port by the Trigger Strobe are written

into low four bits of the header field.

|

Elseif S=10
If S<>10

2
Counter
Enable

1

Counter
Load

If S=01

If S=10 & !EOE

3

Counter
Clear

If S=00
Elseif S=11 If LDS & UDS
& A1l & 'READ
4
Trans- \
parent

If LDS & UDS

Figure17 Header and Counter State Machine Diagram

3.3.7.2 System Interface

The entire Header, Global Word Counter and H& C control state machine is implemented in one EPM5128. The
CPU sees the H& C system as a 16/8 hit peripheral. Four registers can be accessed from the processor bus. The
counter and other H& C registers are accessible in bytes or words. The internal registers are selected by the 68020
through select and control lines: H& CSEL*, R/W*, UDS*, LDS* and A1l. Table 17 gives a register select truth

table for the H& C Controller.

Table17 Header and Counter Control Signal Truth Table

1 ubS

PFRrPROOO>
PFRrOROO

L
0
1
0
1
0
0

R/W Reg. Selected

12 hit counter

Lower 8 bits of the Counter
Upper 4 bits of the counter
Header

Command

Status

PO X X X X

Novmber 1, 1995

53

FSCC Hardware Manual Version PC4b

The interface between the H& C controller and the FASTBUS (FPORT) sequencer is through FCLK (counter
clock) and CEOE (Control End of Event) lines. Both are asynchronous to the 20 MHz clock of the state machine.
FCLK increments H& C counter when it isin Increment mode. CEOE indicates that counting is over and the H& C
value should be transferred to the CFIFO. The GWC isthen reset to zero.

3.3.7.3 H&C Reqgister Definitions

The H& CSEL base address is listed in Figure 2. Table 18 lists the register definitions for the H& C Controller.
The GWC preload register is provided, but under normal use, preloading of the GWC is not necessary. The GWC

isreset whenever and End_Of_Event instruction is executed.

Table18 Header and Counter Register Map

Address Write Function Read Function

H& CSEL+0 GWC Preload register GWC Register

(16-bit) b0-b11: Preload count b0-b11: Counter contents
b12-b15: Undefined b12-b15: Undefined

H& CSEL+2 Header register Header register

(8-hit) bO-b4: HO-4 Header preload bO-b4: HO-4 Header contents
b5-b7: Undefined b5-b7: Undefined

H&CSEL+3 Control register Statusregister

(8-hit) b0-bl: S0,S1 Command select field b0-bl: S0,S1 Command select field
b2: H& C RESET b2: Undefined
b3-b6: Undefined b3-b6: QO0-Q3 H&C state status
b7: ETH control bit b7: ETH control bit

3.3.7.3.1 GWC Preload Register / GWC Register
A Write to this register loads the GWC Preload register. The lower 12 bits of the GWC Preload Register are
transferred into the GWC when the Preload command is written into the H& C Control Register. Reading this
register provides the current contents of the GWC.

3.3.7.3.2 Header Register
Bits 12-16 of the H& C Word contain the Event Header Field. These five bits are provided to alow identification
tags to be attached to individual events. The Header Field (as well as the GWC field) of the H& C word is written
into the CFIFO when an End_Of_Event instruction is executed by the FPORT. There are two modes of operation
for the Header. In the default mode, the Header Field is filled by the value written into the Header Register by the
CPU. The contents of this register may be changed at any time, but the user must be careful to know which
event’s ID tag is being attached to which event (the value in the Header Register when an End Of Event instruction
is executed will be the tag attached to the event). In ETH (Enable Trigger ID in Header) mode, the contents of the
lower four bits of the Header Field are filled by the value clocked into the Front Panel Trigger Input Port by the
Trigger Strobe. These values are clocked into the Trigger Input FIFO. The FPORT clocks the Trigger values out
of the Trigger FIFO with each End Of Event Instruction, so the Trigger Values automatically stay in sync with the
event data in the Data FIFO. The Trigger Input value present when the Trigger Strobe is clocked is attached to the
event read out for that Trigger. In this mode, bit five of the Header Field is filled by bit five of the Header
Register.

54 November 1, 1995

FSCC Hardware Manual Version PC4b

3.3.7.3.3 Control Register

Bits b0 and bl are the H& C Mode select bits SO and S1. Mode definitions are described in Table 19.
Table19 Header and Counter M ode Definitions

Control Mode S1,80 Function
HOLD: 00b Global Word Counter does not increment.
INCRM: 10b Global Word Counter increments one count for each data word written

into the Data FIFO. Upon execution of an End Of Event instruction by the FPORT, the GWC (bits 0-11) is
combined with the Header (bits 12-16) and the Bad Event Bit (bit 17), and pushed into the Control FIFO.
The GWC isthen cleared.

PRELOAD: 01b When set to preload mode, data in the GWC Preload register is
transferred to the Global Word Counter.
TRANSPARENT: 11b Data written to the GWC Preload Register is written directly into the
Control FIFO.

H&C RESET

This high true hit places the H&C into reset state when set. The Command bits are cleared (placed into Hold
mode), the ETH bit is cleared, the GWC Preload Register is set to zero, and the GWC is set to zero. The H&C
RESET bit must be cleared to take the H& C out of reset state.

ETH (EnableTrigger ID in Header) Control Bit

When set to a one, the Trigger ID value in the Trigger FIFO will be written directly into the low four bits of the
Header field of the Header and Counter word when an End Of Event instruction is executed. This eliminates the
need for the processor to read the Trigger ID port and then write this value into the Header register so that the
Trigger ID may attached to the data block. The End Of Event instruction also clocks the Trigger FIFO so that the
next trigger ID value will be ready when the next End Of Event instruction is executed. When the ETH bit is set to
a zero, the 5-bit value in the Header Register (written by the processor) will be transferred into the Header and
Counter word. Since the Trigger ID is 4 bits wide, and the Header field is 5 bits wide, only the four lower bits of
the Header field are written by the Trigger ID. The fifth bit (Header bit 4) is aways written by bit 4 of the Header
Register. The default value of the ETH Control bit is zero.

3.3.7.3.4 Status Register
S1,30
Command Select bits.

H& C state status
These bits reflect the current state number of the H&C Controller's state machine shown in Figure 17. They are
provided mostly for diagnostic purposes.

ETH (EnableTrigger ID in Header) Control Bit
The state of the ETH control bit is reflected.

3.3.8 OPORT Auxiliary Connector Interface

All levels at the output port are single ended TTL. Level adapters to different protocols will be mounted on the
FASTBUS auxiliary card. The data path is 32 bits wide. Two control lines are provided to regulate data flow:
WAIT pauses the OPORT
STROBE is a synchronous data strobe

The OPORT generates the pipeline latch clock, the output data strobe, and the output latch tri-state enable. Timing
diagrams are shown in Figure 10 through Figure 15.

Novmber 1, 1995 55

FSCC Hardware Manual Version PC4b

3.4 Communication Protocols

The following control line assignments apply to the RS-485 FSCC-DARTAC interface;

FBAUX pin B60
FBAUX pin B59
FBAUX pin B58
FBAUX pin B15
FBAUX pin B14

FBAUX pin B4
FBAUX pin B5
FBAUX pin B6
FBAUX pin B7
FBAUX pin B8
FBAUX pin B11
FBAUX pin B12
FBAUX pin B13

AC12
ACl11
AC10
ACQ9
ACO08

ACQ0
ACO1
ACO02
ACO03
AC04
ACO05
ACO06
ACO7

Strobe RS-485 driver Output Enable
32-bit Data driver Output Enable
WAIT* input

End Of Record

STROBE* output

not used (OPORT Aux. parallel port bit 0)
not used (OPORT Aux. parallel port bit 1)
not used (OPORT Aux. parallel port bit 2)
not used (OPORT Aux. parallel port bit 3)
End Of Record driver Output Enable

not used (OPORT Aux. parallel port bit 5)
not used (OPORT Aux. parallel port bit 6)
not used (OPORT Aux. parallel port bit 7)

56

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4. Appendix A - FPORT Controller Instruction Set

Novmber 1, 1995 57

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1 FPORT Controller Normal Mode Instruction Set
4.1.1 BUS ARBITRATE

BUS_ARBITRATE SLOWBASE+$300

Description: Arbitrate for FASTBUS using the low byte of the data operand. Bits 0-5 supply the arbitration
vector. Bit 7 enables assured access mode. Bit 6 (prioritized access mode) is ignored.
Note that the data operand is a long word and is normally identical to the value of
CSR8.

Example Syntax: MOVE.L CSR_8, BUS ARBITRATE
Operation: C1: FPORT select;

C2: FPORT instruction fetch;
C3: instruction dispatch;

C4. if IRQ(SEQINT) {gotoINTS;}
elsaif IGK(FRDY) return processor acknowledge A; FDSACK*[I
else {request bus, FREQU goto C4;}

C5: return sequencer status,
return processor acknowledge B; FDSACK*[
C6: Delay Cycle; /*FPORT deselect*/
C7: Delay Cycle;
C8: Delay Cycle;

Note: In a multi-master system, the processor should examine the parallel port FSLV*, FRDY and FRAK inputs
to confirm that the FSCC has either acquired the bus or been addressed as a slave
while attempting to acquire the bus. O

58 November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.2 BUS RELEASE

BUS_RELEASE

FASTBASE+$004

Description: Release FASTBUS arbitration lock.
Example Syntax: MOVE.L DUMMY, BUS RELEASE
Operation: CL: FPORT select;
return processor acknowledge A; FDSACK* [
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
C3 instruction dispatch;
C4: {DS=0; FCDS
DK=0; FCDKO
AS=0; FCASO
release bus;} FREL[
C5: return sequencer status,
Cé6: Delay Cycle; /*FPORT deselect*/
C7. Delay Cycle;
cs: Delay Cycle;

Novmber 1, 1995

59

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.3 ADDRESS DATA GEOGRAPHICAL

ADDRESS_DATA_GEOGRAPHICAL FASTBASE+$304

Description: Perform a FASTBUS geographical primary address cycle to DATA Space.
Example Syntax: MOVE.L FB_ADDR, ADDRESS DATA_GEOGRAPHICAL

Operation: CL: FPORT select;
latch FB_ADDR; DCPBAQ
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J

C3 instruction dispatch;
C4 if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0;
return sequencer status,
exit;}
else {AS=1; FSASO
RD=0;
MS=0;
EG=1; FDEGO

enable short timer;
goto C4;} TIMERO

60 November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.4 ADDRESS CSR GEOGRAPHICAL

ADDRESS_CSR_GEOGRAPHICAL

FASTBASE+$308

Description:

Example Syntax:

Operation:

C2:

C3:

Perform a FASTBUS geographical primary address cycle to CSR Space.

CL FPORT select;
latch FB_ADDR; DCPBAQ
return processor acknowledge A; FDSACK*[J
FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
instruction dispatch;
if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0; FDM SOOI
return sequencer status,
exit;}
else {AS=1; FSASO
RD=0;
MS=1; FDM SOOI
EG=1; FDEGO
enable short timer; TIMERO
goto C4;}

MOVE.L FB_ADDR,ADDRESS CSR_GEOGRAPHICAL

Novmber 1, 1995

61

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.5 ADDRESS DATA LOGICAL

ADDRESS_DATA_LOGICAL

FASTBASE+$30C

Description:
Example Syntax:

Operation:

C2:

C3:

Perform a FASTBUS logical primary address cycleto DATA Space.

CL FPORT select;
latch FB_ADDR; DCPBAQ
return processor acknowledge A; FDSACK*[J
FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
instruction dispatch;
if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0;
return sequencer status,
exit;}
else {AS=1; FSASO
RD=0;
enable short timer; TIMERO
goto C4;}

MOVE.L FB_ADDR,ADDRESS_DATA_LOGICAL

62

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.6 ADDRESS_CSR_LOGICAL

ADDRESS CSR_LOGICAL FASTBASE+$310
Description: Perform aFASTBUS logical primary address cycle to CSR Space.
Example Syntax: MOVE.L FB_ADDR,ADDRESS CSR LOGICAL
Operation: ClL: FPORT select;
latch FB_ADDR; DCPBA[
return processor acknowledge A; FDSACK*[
C2: FPORT instruction fetch;
return processor acknowledge B; FDSACK*[
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
eseif WT(FRWT) {reset short timer; TIMERO
goto C4;}
eseif AK(FRAK) {reset short timer; TIMERO
MS=0; FDM S0[J
return sequencer status,
exit;}
else {AS=1; FSAS
RD=0;
MS=1; FDM SOOI
enable short timer; TIMERO
goto C4;}
Novmber 1, 1995 63

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.7 ADDRESS DATA BROADCAST

ADDRESS_DATA_BROADCAST

FASTBASE+$314

Description:
Example Syntax:

Operation:

C2:

C3:

Perform a FASTBUS broadcast primary address cycleto DATA Space.

ClL: FPORT select;
latch FB_ADDR; DCPBA[
return processor acknowledge A; FDSACK*[
FPORT instruction fetch;
return processor acknowledge B; FDSACK*[
instruction dispatch;
if IRQ(SEQINT) goto INTF;
eseif WT(FRWT) {reset short timer; TIMERO
goto C4;}
eseif AK(FRAK) {reset short timer; TIMERO
MS=0; FDMS10J
return sequencer status,
exit;}
else {AS=1; FSAS
RD=0;
MS=2; FDMS10
enable short timer;} TIMERDO

MOVE.L FB_ADDR,ADDRESS DATA_BROADCAST

64

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.8 ADDRESS CSR BROADCAST

ADDRESS_CSR_BROADCAST

FASTBASE+$318

Description:

Example Syntax:

Operation:

C2:

C3:

Perform a FASTBUS geographical primary address cycle to CSR Space.

CL FPORT select;

latch FB_ADDR; DCPBAQ

return processor acknowledge A; FDSACK*[J
FPORT instruction fetch;

return processor acknowledge B; FDSACK*[J
instruction dispatch;

if IRQ(SEQINT) goto INTF;
elsef WT(FRWT) {reset short timer; TIMERO
goto C4;}

elseif AK(FRAK) {reset short timer; TIMERO
MS=0; FDMS0L], FDM S10]
return sequencer status;
exit;}

else {AS=1;, FSASO
RD=0;
MS=3; FDMS0L], FDM S10]
enable short timer; TIMERD
goto C4;}

MOVE.L FB_ADDR,ADDRESS CSR_BROADCAST

Novmber 1, 1995

65

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.9 ADDRESS RELEASE

ADDRESS_RELEASE

FASTBASE+$31C

Description: Release address lock.
Example Syntax: MOVE.L DUMMY ADDRESS RELEASE
Operation: CL: FPORT select;
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
else {DS=0; FCDS[
DK=0; FCDKO
MS=0; FDM SO, FDM S1[J,FDM S2[]
AS=0; FSAS
enable short timer;} TIMERO
C5: if IRQ(SEQINT) goto INTF;
edseif AK(FRAK) gotoC5;
else return sequencer status;
exit;

66

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.10 DATA PROCESSOR RANDOM READ

DATA_PROCESSOR_RANDOM_READ SLOWBASE+$320

Description: Perform a FASTBUS single word read data cycle.
Example Syntax: MOVE.L DATA_PROCESSOR_RANDOM_READ,DATA

Operation: CL: FPORT select;
Cc2 FPORT instruction fetch;

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;
elseif WT(FRWT) { reset short timer; TIMERD
goto C4;}
elseif DK(FRDK) return processor acknowledge A; FDSACK*[J
else { enable short timer; TIMERO
RD=1; FDRD[
MS=0;
DS=1; FSDSO
goto C4;}

C5: reset short timer; TIMERDO
return processor acknowledge B; FDSACK*[J

C6: if IRQ(SEQINT) INTF;
elseif WT(FRWT) {reset short timer; TIMERO
goto C6;}

elseif IDK(FRDK*) {return sequencer status,
reset short timer; TIMERL]}
else { enable short timer; TIMERO
RD=0; FDRD[]
MS=0;
DS=0; FCDS
goto C6;}
C7. delay cycle; /* processor deselect */
cs: delay cycle;
Co: delay cycle;

Novmber 1, 1995 67

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.11 DATA PROCESSOR RANDOM WRITE

DATA_PROCESSOR_RANDOM_WRITE FASTBASE+$324

Description: Perform a FASTBUS single word write data cycle.
Example Syntax: MOVE.L DATA ,DATA_PROCESSOR_RANDOM_WRITE

Operation: CL: FPORT select;
latch DATA; DCPBA[C
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif DK(FRDK) reset short timer; TIMERD
else { enable short timer; TIMERO
RD=0;
MS=0;
DS=1; FSDSO
goto C4;}
C5: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C5;}
elseif IDK(FRDK*) {return sequencer status,
exit;}
else { enable short timer; TIMERO
RD=0;
MS=0;
DS=0; FCDSO
goto C5;}

68 November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.12 DATA_PROCESSOR SEC ADDRESS READ

DATA_PROCESSOR_SEC_ADDRESS READ SLOWBASE+$328

Description: Perform a FASTBUS secondary address read cycle.
Example Syntax: MOVE.L DATA_PROCESSOR_SEC_ADDRESS READ,SADDR

Operation: CL: FPORT select;
Cc2 FPORT instruction fetch;

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;
elseif WT(FRWT) { reset short timer; TIMERD
goto C4;}
elseif DK(FRDK) return processor acknowledge A; FDSACK*[J
else { enable short timer; TIMERO
RD=1; FDRD[
MS=2; FDMS10
DS=1; FSDSO
goto C4;}

C5: reset short timer; TIMERDO
return processor acknowledge B; FDSACK*[J

C6: if IRQ(SEQINT) goto INTF;
elsef WT(FRWT) {reset short timer; TIMERO
goto C6;}

elseif IDK(FRDK*) {reset short timer; TIMERD
return sequencer status;}
else { enable short timer; TIMERO
RD=0; FDRD[O
MS=2; FDMS10
DS=0; FCDSO
goto C6;}
C7. delay cycle; [* processor deselect */
cs: delay cycle;
Co: delay cycle;

Novmber 1, 1995 69

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.13 DATA_PROCESSOR SEC ADDRESS WRITE

DATA_PROCESSOR_SEC_ADDRESS_WRITE

FASTBASE+$32C

Description:
Example Syntax:

Operation:

C2:

C3:

C5:

Perform a FASTBUS secondary address write cycle.

CL FPORT select;
latch SADDR; DCPBAO
return processor acknowledge A; FDSACK*[J
FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
instruction dispatch;
if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif DK(FRDK) reset short timer; TIMERD
else { enable short timer; TIMERO
RD=0;
MS=2; FDMS10
DS=1; FSDSO
goto C4;}
if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C5;}
elseif IDK(FRDK*) {return sequencer status,
exit;}
else { enable short timer; TIMERO
RD=0;
MS=0; FDMS10
DS=0; FCDSO
goto C5;}

MOVE.L SADDR,DATA_PROCESSOR_SEC_ADDRESS WRITE

70

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.14 DATA PROCESSOR BLOCK TRANSFER READ

DATA_PROCESSOR_BLOCK_TRANSFER_READ
SLOWBASE+$008

Description: Input one word of a FASTBUS block transfer read cycle. Processor Block transfer reads occur by
executing one DATA_PROCESSOR BLOCK_TRANSFER _READ instruction for
each data word to be input. The FASTBUS sequencer maintains the proper state of

DS after completion of the instruction. The
DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction must then
be used to “clean-up” after a string of

DATA_PROCESSOR_BLOCK_TRANSFER_READ instructions have been
executed. Note that the state of the MS and RD lines are set to zero after each
DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction is executed. This is
allowed by the FASTBUS specification, however, some slaves are confused by this
behavior. Since the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
effectively leaves the state of the Sequencer, and of the attatched slave in the middle
of a block transfer operation, care should be taken to ensure that a
DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction always follows
any group of DATA_PROCESSOR_BLOCK_TRANSFER_READ instructions.

Example Syntax: MOVE.L DATA_PROCESSOR_BLOCK_TRANSFER_READ,DATA

Operation: C1: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;
elseif WT(FRWT) {reset short timer; TIMER
goto C4;}
elseif | DS(FRDS*) {enable short timer; TIMER
RD=1; FDRD]
MS=1; FDMS1]
DS=1; FSD&
goto C6;}
else {enable short timer; TIMER
RD=1; FDRD]
MS=1; FDMSO
DS=0;} FCDS]
C5: if IRQ(SEQINT) goto INTS;
elseif! DK(FRDK*) {return processor acknowledge A; FDSACK*
reset short timer; TIMER

goto C7;}
else goto C5;
C6: if IRQ(SEQINT) goto INTS;

elseif DK(FRDK) {return processor acknowledge A; FDSACK*
reset short timer;} TIMER

Novmber 1, 1995 71

Appendix A - FPORT Controller Normal Mode Instruction Set

else goto C6;
Cr. {return processor acknowledge B; FDSACK*[J
return sequencer status;}
Cs: delay cycle; /* processor deselect */
Co: delay cycle;
C10: delay cycle;
C11: delay cycle;

72

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.15 DATA PROCESSOR BLOCK TRANSFER WRITE

DATA_PROCESSOR_BLOCK_TRANSFER_WRITE

FASTBASE+$00C

Description:

Output one word of a FASTBUS block transfer write cycle. Since the FSCC has been optimized as

Example Syntax:

Operation:

C2:

C3:
C4.

C5:

C1l.

a read-out controller, there is no FIFO to queue data to be output through the
FASTBUS port. Block transfer writes occur by executing one
DATA_PROCESSOR_BLOCK_TRANSFER_WRITE instruction for each data word
to be output. The FASTBUS sequencer maintains the proper state of DS after

completion of the instruction. The
DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction must then
be used to “clean-up” after a string of

DATA_PROCESSOR_BLOCK_TRANSFER_WRITE instructions have been
executed. Note that the state of the MS lines are set to zero after each
DATA_PROCESSOR_BLOCK_TRANSFER_WRITE instruction is executed. This

is allowed by the FASTBUS specification, however, some slaves are confused by this
behavior. Since the DATA_PROCESSOR_BLOCK_TRANSFER_WRITE
instruction effectively leaves the state of the Sequencer, and of the attatched slave in
the middle of a block transfer operation, care should be taken to ensure that a
DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE instruction always
follows any group of DATA_PROCESSOR_BLOCK_TRANSFER_WRITE
instructions.

MOVE.L DATA,DATA_PROCESSOR_BLOCK_TRANSFER_WRITE

FPORT select;

latch DATA; DCPBAC

return processor acknowledge A; FDSACK*
FPORT instruction fetch;

return processor acknowledge B; FDSACK*
instruction dispatch;

if

IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMER

elseif

else

if

RD=0;
MS=1; FDMSQ]
goto C4;}

I DS(FRDS*) {enable short timer; TIMER

RD=0;

MS=1; FDMSQI

DS=1; FSD&

goto C6;}

{enable short timer; TIMER
RD=0;

MS=1; FDMSQI

DS=0;} FCDS]

IRQ(SEQINT) goto INTF;

elseif! DK(FRDK*) {reset short timer; TIMERI

RD=0;

Novmber 1, 1995

73

Appendix A - FPORT Controller Normal Mode Instruction Set

MS=0; FDM S0U
return sequencer status;
exit;}

else goto C5;

Ce6: if (IRQ) gotoINTF;

eseif (DK) {reset short timer; TIMERO
RD=0;
MS=0; FDM S0
exit;}

else goto C6;

74

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.16 DATA PROCESSOR BLOCK TRANSFER TERMINATE

DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE
FASTBASE+$330

Description: Perform termination step of a FASTBUS block transfer read or write operation. This instruction
allows the state of DS to be set low after executing one or more
DATA_PROCESSOR_BLOCK_TRANSFER_WRITE or
DATA_PROCESSOR_BLOCK_TRANSFER_READ instructions. It should aways
be executed after a group of either of these two instructions have been executed.

Example Syntax: MOVE.L DUMMY DATA_PROCESSOR_BLOCK_TRANSFER_TERMINATE

Operation: CL: FPORT select;
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) goto C4;
elseif 'FRDK {return sequencer status, goto C5;}
else {MS=0; FDMS00J, FDM S100, FDM S20J
RD=0; FDRDO
DS=0;} FCDSO

C5: delay cycle;
Cé6: delay cycle;
C7. delay cycle;

Novmber 1, 1995 75

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.17 DATA FIFO BLOCK TRANSFER READ

DATA_FIFO_BLOCK_TRANSFER_READ FASTBASE+$334

Description: Perform a FASTBUS block transfer read to the Data FIFO. The block transfer is terminated upon
receipt of SS=2 from the slave, or if the number of words specified in the Local

Counter have been read (if enabled).
Example Syntax: MOVE.L DUMMY,DATA_FIFO BLOCK_TRANSFER_READ

Operation: CL: FPORT select;
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
C3. instruction dispatch;
C4 if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) { reset short timer; TIMERD
enable FIFO; DFIFOEN,PFIFOEND
RD=1; FDRDU
MS=1; FDM S0
goto C4;}
else { enable FIFO; DFIFOENL,PFIFOENDC
RD=1; FDRDU
MS=1; FDM S0
DS=1; FSDSO
local counter mode = decrement; LCOL, LC1}
C5: {loca counter mode = hold; LCO, LC10
enable short timer;} TIMERO

Cé6: continue; /* delay cycle*/
CT. if ((FRDK*FRSSL)#SEQINT #FEOB) goto C11;
elseif WT(FRWT) {reset short timer; TIMERD
goto C7;}

eseif DK(FRDK) {DS=0; FCDSO
local counter mode = decrement; LCOL, LC10
reset short timer; TIMERO
clock global word counter; FCLK}
else { enable short timer; TIMERO
goto C7;}
Cs8: {loca counter mode = hold; LCO, LC100 /* delay cycle*/
enable short timer; TIMER}
C9: delay cycle;
C10: if (('FRDK*FRSSL#SEQINT#FEOB) goto C11;
dseif WT(FRWT) {reset short timer;
goto C10;}
eseif IDK(IFRDK) {DS=1; FSDSO
local counter mode=decrement; LCO, LC1[]
reset short timer; TIMERO
clock global word counter; FCLKO

76

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

goto C5;}
else goto C10;
C11:if SS2(FRSSL) clock global word counter; FCLKO
* block transfer termination */
C12:if IRQ(SEQINT) gotoINTF;
elseif DS(FRDS) continue;
else goto C22;
[* termination routine for odd word count transfer */
/* check that DK ishigh*/
/* set DS low and wait for DK low */
[* datawritten to FIFO on DK down is dummy word with EOE flag*/
C13:if IRQ(SEQINT) gotoINTF;
elseif DK(FRDK) {reset short timer; TIMERD
MS=0;} FDMS0[I

else { enable short timer; TIMERO
goto C13;}
Cl4:continue; [* delay cycle*/
C15:continue; [* delay cycle*/
C16:continue; [* delay cycle*/

C17:iif IRQ(SEQINT) gotoINTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C17;}
else { enable short timer; TIMERO
DS=0;} FCDSO
C18:if IRQ(SEQINT) gotoINTF;
eseif ! DK(! FRDK) {RD=0; FDRD[
reset short timer; TIMERO
return sequencer status}

else { enable short timer; TIMERO
goto C18;}
C19:continue; [* delay cycle*/
C20:continue; [* delay cycle*/
C2l:exit;

/* termination routine for even word count transfer */
C22:if IRQ(SEQINT) gotoINTF; /* check that DK islow */
elseif ! DK(! FRDK) {RD=0; FDRDO
reset short timer; TIMERO
return sequencer status}

else { enable short timer; TIMERO
goto C22;}
C23:continue; [* delay cycle*/
C24:continue; [* delay cycle*/
C25:continue; [* delay cycle*/
C25:exit;

Novmber 1, 1995 77

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.18 DATA_FIFO PIPELINED READ 100

DATA_FIFO_PIPELINED READ_ 100

FASTBASE+$338

Description: Perform aFASTBUS pipelined read to the Data FIFO at 100 nsec/word. This instruction functions
similarly to the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
except that it follows the FASTBUS specification for Pipelined operations. Note that
the FSCC does not implement a DK counter as caled for in the FASTBUS

specification.

Example Syntax: MOVEL DUMMY,DATA_FIFO_PIPELINED_READ_100

Operation: CL: FPORT select;
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else { enable FIFO; PFFENC], DFFENC
RD=1; FDRDO
MS=3; FDMS0,FDMS10
DS=1; FSDSO

local counter mode = decrement; LCOC,LC10

clock global word counter;} FCLKO
C5: local counter mode = hold; LCOC,LC10
Ce6: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) goto CB6;

dsdf EOB(FEOB) goto PIPELINE_TERMINATE;

else {DS=0; FCDS

local counter mode = decrement; LCOC,LC10

clock global word counter;} FCLKO
Cr. {loca counter mode = hold; LCOO,LC10
goto C4;}

78

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.19 DATA_FIFO PIPELINED READ 200

DATA_FIFO_PIPELINED READ 200 FASTBASE+$33C

Description: Perform aFASTBUS pipelined read to the Data FIFO at 200 nsec/word. This instruction functions
similarly to the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
except that it follows the FASTBUS specification for Pipelined operations. Note that
the FSCC does not implement a DK counter as caled for in the FASTBUS
specification.

Example Syntax: MOVEL DUMMY,DATA_FIFO_PIPELINED_READ_200

Operation: CL: FPORT select;
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J

C3. instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else { enable FIFO; PFFENC], DFFEN[C
RD=1; FDRDO
MS=3; FDMS0,FDMS10
DS=1; FSDSO

local counter mode = decrement; LCOC,LC10
clock global word counter;} FCLKO
C5: local counter mode = hold; LCOO,LC10

Cé6: continue; [* delay cycle*/
C7. continue; [* delay cycle*/
Cs8: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto PIPELINE_TERMINATE;
elseif EOB(FEOB) goto C12;
else {DS=0; FCDSO
local counter mode = decrement; LCOO,LC10
clock global word counter;} FCLKO
Co: local counter mode = hold; LCOC,LC10
C10:continue; [* delay cycle*/
Cll:goto C4; [* delay cycle*/

Novmber 1, 1995 79

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.20 DATA_FIFO PIPELINED READ 400

DATA_FIFO_PIPELINED READ_400

FASTBASE+$340

Description: Perform aFASTBUS pipelined read to the Data FIFO at 400 nsec/word. This instruction functions
similarly to the DATA_PROCESSOR_BLOCK_TRANSFER_READ instruction
except that it follows the FASTBUS specification for Pipelined operations. Note that
the FSCC does not implement a DK counter as caled for in the FASTBUS

specification.

Example Syntax: MOVEL DUMMY,DATA_FIFO_PIPELINED_READ_400

Operation: CL: FPORT select;
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J

C3. instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else { enable FIFO; PFFENC], DFFEN[C
RD=1; FDRDO
MS=3; FDMS0,FDMS10
DS=1; FSDSO

local counter mode = decrement; LCOC,LC10

clock global word counter;} FCLKO
C5: local counter mode = hold; LCOC,LC10

Cé6: continue; [* delay cycle*/
C7. continue; [* delay cycle*/
cs: continue; [* delay cycle*/
Co: continue; [* delay cycle*/
C10:continue; [* delay cycle*/
C11l:continue; [* delay cycle*/
Cl2:if IRQ(SEQINT) gotoINTF;

elseif WT(FRWT) goto C12;

dsdf EOB(FEOB) goto PIPELINE_TERMINATE;

else {DS=0; FCDS

local counter mode = decrement; LCOC,LC10

clock global word counter;} FCLKO
C13:local counter mode = hold; LCOC,LC10

C14:continue; [* delay cycle*/
C15:continue; [* delay cycle*/
C16:continue; [* delay cycle*/
C17:continue; [* delay cycle*/
C18:continue; [* delay cycle*/
C19:goto C4; [* delay cycle*/

80

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.21 SEQUENCER NULL

SEQUENCER_NULL FASTBASE+$020

Description: Access the FPORT Controller without performing any operation. Confirms that the FPORT
Contraller is active. If the FPORT Controller is stalled, SEQUENCER_NULL will
cause a Processor BUS ERROR interrupt.

Example Syntax: MOVEL DUMMY,SEQUENCER NULL

Operation: CL: FPORT select;
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J

C3 instruction dispatch;
C4. { return sequencer status,
exit;}

Note: If FASTBUSWT is asserted, the FPORT Controller will wait indefinitely for a slave response. A WT time-
out will only be generated (after the long time-out period) if the processor attempts
another FASTBUS instruction while the first operation is pending. In cases where
the processor does not access the FPORT Controller for extended periods of time
(e.g., a standalone microcode readout loop) an occasiona SEQUENCER)NULL
instruction will detect a FASTBUS lockup condition. SEQUENCER_NULL will
aso guarantee that all pending FASTBUS operations have been completed by
clearing the instruction pipeline.

Novmber 1, 1995 81

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.22 LOCAL COUNTER LOAD

LOCAL_COUNTER_LOAD SLOWBASE+$010

Description: Initialize Local Word Counter for block transfer.
Example Syntax: MOVE.L COUNT,LOCAL_COUNTER_LOAD

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: {return processor acknowledge A; FDSACK*[]
local counter mode = load;} LC10
C5: {return processor acknowledge B; FDSACK*[J
local counter mode = hold;} LC10

C6: return sequencer status; [* processor deselect */
C7: delay cycle;
C8: delay cycle

Note: The counter isloaded from the low order 12 bits of COUNT.

82 November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.23 LOCAL COUNTER READ

LOCAL _COUNTER_READ SLOWBASE+$014
Description: Read current value of Local Word Counter.
Example Syntax: MOVE.L LOCAL_COUNTER_READ,COUNT
Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: {return processor acknowledge A; FDSACK*[]
local counter mode = read;} SLCOE[D
Cs: return processor acknowledge B; FDSACK*[J
Cé6: return sequencer status; /* processor deselect */
C7. delay cycle;
Cs: delay cycle;
Note: The counter isreturned in the low order 12 bits of COUNT.
Novmber 1, 1995 83

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.24 FIFO WRITE

FIFO_WRITE SLOWBASE+$018
Description: Write asingle word from the processor to the Data FIFO.
Example Syntax: MOVE.L DATA,FIFO_WRITE
Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: {return processor acknowledge A; FDSACK*[
clock FIFO input;} SDWO
C5: {return processor acknowledge B; FDSACK*[J
clock global word counter;} FCLKO
C6: return sequencer status; [* processor deselect */
C7. delay cycle;
cs: delay cycle;

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.25 END OF EVENT

END_OF_EVENT FASTBASE+$024

Description: Write dummy word to the data FIFO with the End-Of-Event bit set, and send Control EOE to
OPORT to start output.

Example Syntax: MOVE.L DUMMY,END_OF EVENT

Operation: CL: FPORT select;

C2 FPORT instruction fetch;

C3 instruction dispatch;

C4. set EOE flag to data FIFO; DEOED
set FIFO datawrite; SDWO

C5: negate FIFO data write;

C6: set FIFO datawrite; SDWL,

C7. negate FIFO datawrite
negate EOE flag to data FIFO
set EOE flag to Output Port; CEOELS;

cs: hold EOE flag to Output Port true
return sequencer status;

Novmber 1, 1995 85

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.26 END _OF EVENT REXMIT

END_OF_EVENT_REXMIT FASTBASE+$02C

Description: Send Control EOE to OPORT to start output. Does not insert the Data EOE flag into the Data
FIFO. Use End Of Event Rexmit when using the Retransmit feature of the Data
FIFO to repeat an event transfer out of the Output Port. Use End_Of Event when the
datain the Data FIFO has not been output before.

Example Syntax: MOVE.L DUMMY,END_OF EVENT_REXMIT

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: { set EOE flag to output controller; CEOEL}
C5: return sequencer status,

86 November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.27 SLAVE DATA INPUT

SLAVE_DATA INPUT SLOWBASE+$01C
Description: Transfer one dataword from FASTBUS to the processor in slave mode.
Example Syntax: MOVE.L SLAVE_DATA_INPUT,DATA
Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;
eseif WT(FRWT) goto C4;
elseif DS(FRDS) {return processor acknowledge A; FDSACK*[J
clear WT;} FCWTO
else {return processor acknowledge A; FDSACK*[J
clear WT; FCWTO
goto C6;}
C5: {return processor acknowledge B; FDSACK*[J
DK=1; FSDKO
goto C7;}
C6: {return processor acknowledge B; FDSACK*[J
DK=0;} FCDKO
C7: return sequencer status,
C8: delay cycle;
C9: delay cycle;

Novmber 1, 1995

87

Appendix A - FPORT Controller Normal Mode Instruction Set

4.1.28 SLAVE _DATA OUTPUT

SLAVE_DATA_OUTPUT

FASTBASE+$344

Description: Transfer one data word from the processor to FASTBUS in slave mode.
Example Syntax: MOVE.L DATA,SLAVE DATA_OUTPUT
Operation: CL: FPORT select;
latch DATA; DCPBAQC
return processor acknowledge A; FDSACK*[J
C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) got0 C4;

elseif DS(FRDS) {clear WT; FCWTO
DK=1; FSDKO
return sequencer status;
exit;}

else {clear WT; FCWTO
DK=0; FCDK[O
return sequencer status;
exit;}

88

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

PIPELINE_TERMINATE Internal Subroutine

Description: Internal routine to terminate pipelined transfers.
Example Syntax:

Operation: CL: if SS1(FRSSL1) clock global work counter; FCLKO

C2 if IRQ(SEQINT) goto INTF;
eseif DS(FRDS) continue; TIMERO
else goto C8;

/* termination routine for odd word count transfer */
* check that DK is high */
/* set DS low and wait for DK low */

C3: if IRQ(SEQINT) goto INTF;
else I DK(! FRDK) goto C3; TIMERO
C4: continue; [* delay cycle*/
C5: continue; [* delay cycle*/
Ce6: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) goto C6;
else { clock global word counter; FCLKO
DS=0;} FCDSO
Cr. if IRQ(SEQINT) goto INTF;

elseif ! DK(! FRDK) {RD=0; FDRDO
return sequencer status
exit;}

else goto C7; TIMERO
/* termination routine for even word count transfer */
/* check that DK islow */
C8:if IRQ(SEQINT) gotoINTF;

elseif ! DK(! FRDK) {reset short timer; TIMERO

return sequencer status}
else goto C8;
C9:continue;
C10:continue;
Cll:exit;

Novmber 1, 1995 89

Appendix A - FPORT Controller Normal Mode Instruction Set

INTS

Internal Subroutine

Description: Internal routine to abort instruction on error interrupt.

INTS assumes that processor acknowledge has not yet been returned.

Operation: CL return processor acknowledge A; FDSACK*[J
C2 return processor acknowledge B; FDSACK*[J
goto INTF,;

90

November 1, 1995

Appendix A - FPORT Controller Normal Mode Instruction Set

INTF

Internal Subroutine

Description: Internal routine to abort instruction on error interrupt.
INTF assumes that processor acknowledge has already been returned.

Exit the current FASTBUS operation by returning all signalsto inactive state.

Operation: CL: {disable transceivers,
AS=0; FCASO
DS=0; FCDS
DK=0;} FCDK[O
Cc2. delay cycle; [* processor deselect */
C3: exit;

Novmber 1, 1995

91

Appendix A - FPORT Controller List Mode Instruction Set

4.2 FPORT Controller List Mode Instruction Set
4.2.1 BUS ARBITRATE

BUS_ARBITRATE LISTBASE+$300

Description: Arbitrate for FASTBUS using the low byte of the data operand. Bits 0-5 supply the arbitration
vector. Bit 7 enables assured access mode. Bit 6 (prioritized access mode) is ignored.
Note that the data operand is a long word and is normally identical to the value of
CSR8.

Example Syntax: MOVE.L CSR_8,L_BUS ARBITRATE
Operation: C1: FPORT select;

C2: FPORT instruction fetch;
C3: instruction dispatch;

C4. if IRQ(SEQINT) {gotoINTS;}
elseif IGK(FRDY) return sequencer status; return
else {request bus; FREQLU goto C4;}

92 November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.2 BUS RELEASE

BUS_RELEASE

LISTBASE+$004

Description:

Example Syntax:

Operation:
C2.
C3:
C4.

C5:
Ce6:
Cr.
C8:

Release FASTBUS arbitration lock.

CL FPORT select;
FPORT instruction fetch;
instruction dispatch;
{DS=0; FCDSO

DK=0; FCDK[O

AS=0; FCASO

release bus;} FREL[
return sequencer status;
Delay Cycle; /*FPORT deselect*/
Delay Cycle;

Delay Cycle;

MOVE.L DUMMY, L_BUS RELEASE

Novmber 1, 1995

93

Appendix A - FPORT Controller List Mode Instruction Set

4.2.3 ADDRESS DATA GEOGRAPHICAL

ADDRESS_DATA_GEOGRAPHICAL

LISTBASE+$304

Description: Perform a FASTBUS geographical primary address cycle to DATA Space.

Example Syntax: MOVE.L FB_ADDR, L_ADDRESS DATA_GEOGRAPHICAL

Operation: CL: FPORT select;
latch FB_ADDR; DCPBA[
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0;
return sequencer status;
exit;}
else {AS=1; FSASO
RD=0;
MS=0;
EG=1; FDEGO
enable short timer;
goto C4;} TIMERO

9%

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.4 ADDRESS CSR GEOGRAPHICAL

ADDRESS_CSR_GEOGRAPHICAL

LISTBASE+$308

Description:

Example Syntax:

Operation:

C2:
C3:
C4:

Perform a FASTBUS geographical primary address cycle to CSR Space.

CL FPORT select;
latch FB_ADDR; DCPBAU
FPORT instruction fetch;
instruction dispatch;
if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0; FDM S0U
return sequencer status;
exit;}
else {AS=1; FSASO
RD=0;
MS=1; FDM S0
EG=1; FDEG[
enable short timer; TIMERD
goto C4;}

MOVE.L FB_ADDR,L_ADDRESS CSR_GEOGRAPHICAL

Novmber 1, 1995

95

Appendix A - FPORT Controller List Mode Instruction Set

4.2.5 ADDRESS DATA LOGICAL

ADDRESS_DATA_LOGICAL

LISTBASE+$30C

Description:

Example Syntax:

Perform a FASTBUS logical primary address cycleto DATA Space.

Operation: CL: FPORT select;
latch FB_ADDR; DCPBAU
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0;
return sequencer status;
exit;}
else {AS=1; FSASO
RD=0;
enable short timer; TIMERD
goto C4;}

MOVE.L FB_ADDR,L_ADDRESS DATA_LOGICAL

96

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.6 ADDRESS_CSR_LOGICAL

ADDRESS_CSR_LOGICAL

LISTBASE+$310

Description:

Example Syntax:

Perform a FASTBUS logical primary address cycle to CSR Space.

Operation: CL: FPORT select;
latch FB_ADDR; DCPBAU
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0; FDM S0U
return sequencer status;
exit;}
else {AS=1; FSASO
RD=0;
MS=1; FDM S0
enable short timer; TIMERD
goto C4;}

MOVE.L FB_ADDR,L_ADDRESS CSR_LOGICAL

Novmber 1, 1995

97

Appendix A - FPORT Controller List Mode Instruction Set

4.2.7 ADDRESS DATA BROADCAST

ADDRESS_DATA_BROADCAST

LISTBASE+$314

Description:

Example Syntax:

Operation:

C2:
C3:
C4:

Perform a FASTBUS broadcast primary address cycleto DATA Space.

CL FPORT select;
latch FB_ADDR; DCPBA[
FPORT instruction fetch;
instruction dispatch;
if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif AK(FRAK) {reset short timer; TIMERD
MS=0; FDMS10
return sequencer status;
exit;}
else {AS=1; FSASO
RD=0;
MS=2; FDMS10
enable short timer;} TIMERO

MOVE.L FB_ADDR,L_ADDRESS DATA_BROADCAST

98

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.8 ADDRESS CSR BROADCAST

ADDRESS_CSR_BROADCAST

LISTBASE+$318

Description: Perform a FASTBUS geographical primary address cycle to CSR Space.

Example Syntax: MOVE.L FB_ADDR,L_ADDRESS CSR_BROADCAST

Operation: CL: FPORT select;
latch FB_ADDR; DCPBA[
C2 FPORT instruction fetch;
C3 instruction dispatch;

C4: if IRQ(SEQINT) goto INTF;
elsef WT(FRWT) {reset short timer; TIMERO

goto C4;}

elseif AK(FRAK) {reset short timer; TIMERO
MS=0; FDM 0[], FDMS10
return sequencer status;

exit;}
else {AS=1; FSASO
RD=0;

MS=3; FDM S0, FDM S10
enable short timer; TIMERO

goto C4;}

Novmber 1, 1995

99

Appendix A - FPORT Controller List Mode Instruction Set

4.2.9 ADDRESS RELEASE

ADDRESS_RELEASE

LISTBASE+$31C

Description: Release address lock.
Example Syntax: MOVE.L DUMMY ,L_ADDRESS RELEASE

Operation: CL: FPORT select;
Cc2 FPORT instruction fetch;

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
else {DS=0; FCDS[
DK=0; FCDKO
MS=0; FDM SO, FDM S1[J,FDM S2[]
AS=0; FSAS

enable short timer;} TIMERO

C5: if IRQ(SEQINT) goto INTF;
edseif AK(FRAK) gotoC5;
else return sequencer status,
exit;

100

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.10 DATA RANDOM READ

DATA _RANDOM_READ LISTBASE+$320

Description: Perform a FASTBUS single word read data cycle. FASTBUS Dataword is transferred to the Data
FIFO.

Example Syntax: MOVE.L DUMMY,L_DATA _RANDOM_READ

Operation: CL: FPORT select;
Cc2. FPORT instruction fetch;

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTS;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif DK(FRDK)
else { enable short timer; TIMERO
RD=1; FDRDU
MS=0;
DS=1; FSDSU
goto C4;}
C5: reset short timer; TIMERD
C6: if IRQ(SEQINT) INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C6;}

eseif IDK(FRDK*) {return sequencer status,
reset short timer; TIMERLC}
else { enable short timer; TIMERO
RD=0; FDRD[]
MS=0;
DS=0; FCDSO
goto C6;}
C7. delay cycle;
cs: delay cycle;
Co: delay cycle;

Novmber 1, 1995 101

Appendix A - FPORT Controller List Mode Instruction Set

4.2.11 DATA RANDOM WRITE

DATA _RANDOM_WRITE

LISTBASE+$324

Description: Perform a FASTBUS single word write data cycle.

Example Syntax:

Operation: CL:

MOVE.L DATA,L_DATA _RANDOM_WRITE

FPORT select;

latch DATA; DCPBA[
C2: FPORT instruction fetch;

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif DK(FRDK) reset short timer; TIMERO
else { enable short timer; TIMERO
RD=0;
MS=0;
DS=1; FSDSO
goto C4;}
C5: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C5;}
elseif IDK(FRDK*) {return sequencer status,
exit;}
else { enable short timer; TIMERO
RD=0;
MS=0;
DS=0; FCDSO
goto C5;}

102

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.12 DATA _

SECONDARY ADDRESS READ

DATA _SECONDARY_ADDRESS_READ

LISTBASE+$328

Description:

Example Syntax:

Operation:
C2.
C3:
C4.

C5:
C6:

CT7:
C8:
Co:

Perform a FASTBUS secondary address read cycle. Datais transferred to the Data FIFO.

C1L FPORT select;
FPORT instruction fetch;
instruction dispatch;

if IRQ(SEQINT) goto INTS;

elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}

elseif DK(FRDK)

else { enable short timer; TIMERO
RD=1; FDRDU
MS=2; FDMS10
DS=1; FSDSU
goto C4;}

reset short timer; TIMERD

if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) {reset short timer; TIMERD
goto C6;}

elseif IDK(FRDK*) {reset short timer; TIMERD
return sequencer status;}

else { enable short timer; TIMERO
RD=0; FDRD[]
MS=2; FDMS1[]
DS=0; FCDSO
goto C6;}
delay cycle; [* processor deselect */
delay cycle;
delay cycle;

MOVE.L DUMMY ,L_DATA _SECONDARY_ADDRESS READ

Novmber 1, 1995

103

Appendix A - FPORT Controller List Mode Instruction Set

4.2.13 DATA SECONDARY ADDRESS WRITE

DATA _SECONDARY_ADDRESS_WRITE

LISTBASE+$32C

Description: Perform a FASTBUS secondary address write cycle.

Example Syntax:

Operation: CL:

MOVE.L SADDR,L_DATA _SEC_ADDRESS WRITE

FPORT select;

latch SADDR; DCPBAO
C2: FPORT instruction fetch;

C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C4;}
elseif DK(FRDK) reset short timer; TIMERO
else { enable short timer; TIMERO
RD=0;
MS=2; FDMS1[]
DS=1; FSDSO
goto C4;}
C5: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
goto C5;}
eseif IDK(FRDK*) {return sequencer status,
exit;}
else { enable short timer; TIMERO
RD=0;
MS=0; FDMS10
DS=0; FCDSO
goto C5;}

104

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.14 DATA BLOCK TRANSFER WRITE

DATA _BLOCK_TRANSFER_WRITE

LISTBASE+$00C

Description:

Output one word of a FASTBUS block transfer write cycle. Since the FSCC has been optimized as

Example Syntax:

Operation:

C2:
C3:
C4.

C5:

C6:

C1.

a read-out controller, there is no FIFO to queue data to be output through the
FASTBUS port. Block transfer writes occur by executing one
DATA_BLOCK_TRANSFER_WRITE instruction for each data word to be output.

The FASTBUS sequencer maintains the proper state of DS after completion of the
instruction. The DATA_BLOCK_TRANSFER_TERMINATE instruction must then

be used to “clean-up” after a string of DATA_BLOCK _TRANSFER_WRITE
instructions have been executed. Note that the state of the MS lines are set to zero
after each DATA_BLOCK_TRANSFER_WRITE instruction is executed. This is
allowed by the FASTBUS specification, however, some slaves are confused by this
behavior. Since the DATA BLOCK_TRANSFER_WRITE instruction effectively
leaves the state of the Sequencer, and of the attatched slave in the middle of a block
transfer operation, care should be taken to ensure that a
DATA_BLOCK_TRANSFER_TERMINATE instruction always follows any group

of DATA_BLOCK_TRANSFER_WRITE instructions.

MOVE.L DATA,L_DATA _BLOCK_TRANSFER_WRITE

FPORT select;

latch DATA; DCPBAC
FPORT instruction fetch;
instruction dispatch;

if

elseif

elseif

else

if

elseif

else
if

IRQ(SEQINT) goto INTF;

WT(FRWT) {reset short timer; TIMER

RD=0;
MS=1; FDMSQ
goto C4;}

I DS(FRDS*) {enable short timer; TIMER

RD=0;

MS=1; FDMSQI

DS=1; FSD&

goto C6;}

{enable short timer; TIMER

RD=0;

MS=1; FDMSQI

DS=0;} FCDS]
IRQ(SEQINT) goto INTF;

I DK(FRDK¥*) {reset short timer; TIMER]

RD=0;
MS=0; FDMSQ
return sequencer status;
exit;}
goto C5;
(IRQ) goto INTF;

Novmber 1, 1995

105

Appendix A - FPORT Controller List Mode Instruction Set

eseif (DK) {reset short timer; TIMERO
RD=0;
MS=0; FDM S0U
exit;}

else goto C6;

106 November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.15 DATA BLOCK TRANSFER TERMINATE

DATA _BLOCK_TRANSFER_TERMINATE LISTBASE+$330

Description: Perform termination step of a FASTBUS block transfer write operation. This instruction allows
the state of DS to be sat low after executing one or more
DATA_BLOCK_TRANSFER WRITE instructions. It should aways be executed
after a group of DATA_BLOCK_TRANSFER WRITE instructions have been
executed.

Example Syntax: MOVE.L DUMMY,L_DATA BLOCK_TRANSFER_TERMINATE

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
eseif WT(FRWT) goto C4;
eseif 'FRDK {return sequencer status; goto C5;}
else {MS=0; FDMS0UJ, FDM S100, FDM S200)
RD=0; FDRDO
DS=0;} FCDSO
C5: delay cycle;
Cé6: delay cycle;
Cr. delay cycle;

Novmber 1, 1995 107

Appendix A - FPORT Controller List Mode Instruction Set

4.2.16 DATA BLOCK TRANSFER READ

DATA BLOCK_TRANSFER_READ

LISTBASE+$334

Description: Perform a FASTBUS block transfer read to the Data FIFO. The block transfer is terminated upon
receipt of SS=2 from the slave, or if the number of words specified in the Local
Counter have been read (if enabled).
Example Syntax: MOVE.L DUMMY,L_DATA BLOCK_TRANSFER_READ
Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
enable FIFO; DFIFOENL,PFIFOENQC
RD=1; FDRDU
MS=1; FDM S0
goto C4;}
else { enable FIFO; DFIFOEN[,PFIFOEN
RD=1; FDRDU
MS=1; FDM S0
DS=1; FSDS
local counter mode = decrement; LCOL, LC1}
C5: {loca counter mode = hold; LCO, LC10
enable short timer;} TIMERO
Cé6: continue; /* delay cycle*/
CT. if ((FRDK*FRSSL)#SEQINT #FEOB) goto C11;
elseif WT(FRWT) {reset short timer; TIMERD
goto C7;}
eseif DK(FRDK) {DS=0; FCDSO
local counter mode = decrement; LCOO, LC10
reset short timer; TIMERO
clock global word counter; FCLK}
else { enable short timer; TIMERO
goto C7;}
Cs8: {loca counter mode = hold; LCOO, LC100 /* delay cycle™*/
enable short timer; TIMER}
C9: delay cycle;
C10: if (("FRDK*FRSS1)#SEQINT#FEOB) goto C11;

dseif WT(FRWT) {reset short timer;
goto C10;}
eseif IDK(IFRDK) {DS=1; FSDSO
local counter mode=decrement; L CO, LC1[]
reset short timer; TIMERO
clock global word counter; FCLKO
goto C5;}
ese goto C10;

108

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

C11: if SS2(FRSS1) clock global word counter; FCLKO
/* block transfer termination */
C12: if IRQ(SEQINT) goto INTF;
edseif DS(FRDS) continue;
else goto C22;
/* termination routine for odd word count transfer */
/* check that DK ishigh*/
/* set DSlow and wait for DK low */
[* datawritten to FIFO on DK down is dummy word with EOE flag*/

C13if
elseif

else

Cl14:continue;
C15:continue;
C16:continue;
Ci1r7.if

e saif

else
C18:if

elsaf

else
C19:continue;

C20:continue;
C21:exit;

IRQ(SEQINT) goto INTF;
DK(FRDK) {reset short timer; TIMERO
MS=0;} FDMS0[I
{ enable short timer; TIMERO
goto C13;}
[* delay cycle*/
[* delay cycle*/
[* delay cycle*/
IRQ(SEQINT) goto INTF;
WT(FRWT) {reset short timer; TIMERD
goto C17;}
{ enable short timer; TIMERO
DS=0;} FCDSO
IRQ(SEQINT) goto INTF;
| DK(! FRDK) {RD=0; FDRD[
reset short timer; TIMERO
return sequencer status}
{ enable short timer; TIMERO
goto C18;}
[* delay cycle*/
[* delay cycle*/

/* termination routine for even word count transfer */

C2z:if
elseif

else

C23:continue;
C24:continue;
C25:continue;
C25:exit;

IRQ(SEQINT) goto INTF; /* check that DK islow */
I DK(! FRDK) { RD=0; FDRDO
reset short timer; TIMERO
return sequencer status}
{ enable short timer; TIMERO
goto C22;}
[* delay cycle*/
[* delay cycle*/
[* delay cycle*/

Novmber 1, 1995

109

Appendix A - FPORT Controller List Mode Instruction Set

4.2.17 DATA PIPELINED READ 100

DATA _PIPELINED READ_100

LISTBASE+$338

Description: Perform a FASTBUS pipelined read to the Data FIFO at 100 nsec/word. This instruction
functions similarly to the DATA_BLOCK_TRANSFER_READ instruction except
that it follows the FASTBUS specification for Pipelined operations. Note that the
FSCC does not implement a DK counter as called for in the FASTBUS specification.

Example Syntax: MOVEL DUMMY,L PIPELINED_READ_100

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
eseif WT(FRWT) goto C4;

dsdf EOB(FEOB) goto PIPELINE_TERMINATE;
dse {enable FIFO; PFFENL], DFFENC]

RD=1; FDRDU
MS=3; FDM S0, FDMS1[
DS=1; FSDSO

local counter mode = decrement; L COC,LC10
clock global word counter;} FCLKO

C5: local counter mode = hold; LCOO,LC10
C6: if IRQ(SEQINT) goto INTF;
glseif WT(FRWT) goto C6;

dsdf EOB(FEOB) goto PIPELINE_TERMINATE;

else {DS=0; FCDS

local counter mode = decrement; LCOC,LC10
clock global word counter;} FCLKO

Cr. {loca counter mode = hold; LCOO,LC10
goto C4;}

110

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.18 DATA PIPELINED READ 200

DATA _PI

PELINED_READ 200

LISTBASE+$33C

Description: Perform a FASTBUS pipelined read to the Data FIFO at 200 nsec/word. This instruction
functions similarly to the DATA_BLOCK_TRANSFER_READ instruction except
that it follows the FASTBUS specification for Pipelined operations. Note that the
FSCC does not implement a DK counter as called for in the FASTBUS specification.

Example Syntax: MOVE.L DUMMY,L_DATA _PIPELINED_READ_200

Operation: CL: FPORT select;

C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
eseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN[], DFFENO
RD=1; FDRDU
MS=3; FDMSOL,FDM S1[1
DS=1; FSDS
local counter mode = decrement; LCOO,LC10
clock global word counter;} FCLKO
C5: local counter mode = hold; LCOC,LC10
Cé6: continue; [* delay cycle*/
C7. continue; [* delay cycle*/
C8: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) goto PIPELINE_TERMINATE;
elseif EOB(FEOB) goto C12;
else {DS=0; FCDS
local counter mode = decrement; LCOO,LC10
clock global word counter;} FCLKO
Co: local counter mode = hold; LCOC,LC10
C10:continue; [* delay cycle*/
Cl1l:goto C4; [* delay cycle*/

Novmber 1, 1995

111

Appendix A - FPORT Controller List Mode Instruction Set

4.2.19 DATA PIPELINED READ 400

DATA _PIPELINED READ_400

LISTBASE+$340

Description: Perform a FASTBUS pipelined read to the Data FIFO at 400 nsec/word. This instruction

functions similarly to the DATA_BLOCK_TRANSFER_READ instruction except
that it follows the FASTBUS specification for Pipelined operations. Note that the
FSCC does not implement a DK counter as called for in the FASTBUS specification.

Example Syntax: MOVEL DUMMY,L_DATA PIPELINED_READ_400

Operation:

CL FPORT select;
return processor acknowledge A; FDSACK*[J

C2 FPORT instruction fetch;
return processor acknowledge B; FDSACK*[J
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
eseif WT(FRWT) goto C4;
elseif EOB(FEOB) goto PIPELINE_TERMINATE;
else {enable FIFO; PFFEN[], DFFENO
RD=1; FDRDU
MS=3; FDMSOL,FDM S1[1
DS=1; FSDS
local counter mode = decrement; LCO,LC10]
clock global word counter;} FCLKO
C5: local counter mode = hold; LCOC,LC10
C6: continue; [* delay cycle*/
Cr. continue; [* delay cycle*/
cs: continue; [* delay cycle*/
Co: continue; [* delay cycle*/
C10:continue; [* delay cycle*/
C11:continue; [* delay cycle*/
Clz:if IRQ(SEQINT) goto INTF;

elseif WT(FRWT) goto C12;

elseif EOB(FEOB) goto PIPELINE_ TERMINATE;

else {DS=0; FCDS[
local counter mode = decrement; LCOL,LC10
clock global word counter;} FCLKO

C13:local counter mode = hold; LCOO,LC10

C14:continue; [* delay cycle*/
C15:continue; [* delay cycle*/
C16:continue; [* delay cycle*/
C17:continue; [* delay cycle*/
C18:continue; [* delay cycle*/
C19:goto C4; [* delay cycle*/

112

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4220 DATA _

RANDOM READ LEADING WORD COUNT

DATA _RANDOM_READ_LEADING_WORD_COUNT LISTBASE+$344

Description:

Example Syntax:

Perform a FASTBUS single word read data cycle. FASTBUS Data word is transferred to the

Local Word Counter (LWC).

Operation: ClL: FPORT select;
C2: FPORT instruction fetch;
C3: instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
eseif WT(FRWT) {reset short timer; TIMERO
goto C4;}
elseif DK(FRDK) {counter load, goto C5;}
else {enable short timer; TIMERO
RD=1; FDRDO
MS=0;
DS=1; FSDSO
goto C4;}
C5: { counter load, reset short timer; TIMERC}
C6: if IRQ(SEQINT) INTF;
eseif WT(FRWT) {reset short timer; TIMERO
goto C6;}
elseif IDK(FRDK*) {return sequencer status;
reset short timer; TIMERL}
else {enable short timer; TIMERO
RD=0; FDRDO
MS=0;
DS=0; FCDSO
goto C6;}
Cr. delay cycle;
C8: delay cycle;
C9: delay cycle;

MOVE.L DUMMY,L_DATA _RANDOM_READ_LEAD_LEADING_WORD_COUNT

Novmber 1, 1995

113

Appendix A - FPORT Controller List Mode Instruction Set

4.2.21 DATA BLOCK TRANSFER READ TO LOCAL COUNTER

DATA BLOCK_TRANSFER_READ_LOCAL_COUNTER
LISTBASE+$348

Description: Perform aFASTBUS block transfer read to the Data FIFO, place the first word transferred into the
Local counter. If the Local Counter is enabled, the transfer will then terminate after
the number of words specifed in the first word of the transfer (non-inclusive) have
been input.

Example Syntax: MOVEL DUMMY,L_DATA BLOCK_TRANSFER_READ TO...

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: if IRQ(SEQINT) goto INTF;
elseif WT(FRWT) {reset short timer; TIMERD
enable FIFO; DFIFOEN,PFIFOEND

RD=1; FDRDU
MS=1; FDM SO0
goto C4;}
elseif DK(FRDK) loca counter mode = load; LCO, LC10
goto C5;}
else {RD=1; FDRDO
MS=1; FDM S0
DS=1; FSDS
goto C4;}
C5: {loca counter mode = load; LCO[, LC10]
goto }
Cé6: continue; /* delay cycle*/
CT7. if ((FRDK*FRSSL)#SEQINT #FEOB) goto C11;
elseif WT(FRWT) {reset short timer; TIMERD
goto C7;}

eseif DK(FRDK) {DS=0; FCDSO
local counter mode = decrement; LCOL, LC10
reset short timer; TIMERO
clock global word counter; FCLK}
else { enable short timer; TIMERO
goto C7;}
Cs8: {loca counter mode = hold; LCOO, LC100 /* delay cycle™*/
enable short timer; TIMER}
C9: delay cycle;
C10: if (("FRDK*FRSS1)#SEQINT#FEOB) goto C11;
dseif WT(FRWT) {reset short timer;
goto C10;}
eseif IDK(IFRDK) {DS=1; FSDSO
local counter mode=decrement; LCO, LC10]
reset short timer; TIMERO

114 November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

clock global word counter; FCLKO

goto C5;}
else goto C10;
C11: if SS2(FRSS1) clock global word counter; FCLKO
* block transfer termination */
C12: if IRQ(SEQINT) goto INTF;
eseif DS(FRDS) continue;
else goto C22;

/* termination routine for odd word count transfer */

/* check that DK ishigh*/

/* set DS low and wait for DK low */

[* datawritten to FIFO on DK down is dummy word with EOE flag*/

C13if
elseif

else

C14:continue;
C15:continue;
C16:continue;
Ci17:if

e saif

else
C18:if

elsaf

else
C19:continue;

C20:continue;
C21:exit;

IRQ(SEQINT) goto INTF;
DK(FRDK) {reset short timer; TIMERO
MS=0;} FDMS0[I
{ enable short timer; TIMERO
goto C13;}
[* delay cycle*/
[* delay cycle*/
[* delay cycle*/
IRQ(SEQINT) goto INTF;
WT(FRWT) {reset short timer; TIMERD
goto C17;}
{ enable short timer; TIMERO
DS=0;} FCDSO
IRQ(SEQINT) goto INTF;
I DK(! FRDK) {RD=0; FDRD[
reset short timer; TIMERO
return sequencer status}
{ enable short timer; TIMERO
goto C18;}
[* delay cycle*/
[* delay cycle*/

/* termination routine for even word count transfer */

C2z:if
elseif

else

C23:continue;
C24:continue;
C25:continue;
C25:exit;

IRQ(SEQINT) goto INTF; /* check that DK islow */
I DK(! FRDK) { RD=0; FDRDO
reset short timer; TIMERO
return sequencer status}
{ enable short timer; TIMERO
goto C22;}
[* delay cycle*/
[* delay cycle*/
[* delay cycle*/

Novmber 1, 1995

115

Appendix A - FPORT Controller List Mode Instruction Set

4.2.22 TRIGGER HOLD

TRIGGER_HOLD

LISTBASE+$02C

Description: Poll Trigger FIFO empty flag and wait if FIFO is empty.

Example Syntax: MOVEL DUMMY,L_TRIGGER HOLD

Operation: CL: FPORT select;
Cc2 FPORT instruction fetch;

C3 instruction dispatch;

C4. delay;

C5: if IRQ(SEQINT) goto INTF;
elseif THFO_NOT_EMPTY {exit;}
else {goto C4;}

116

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.23 INSTRUCTION LIST RE-EXECUTE

INSTRUCTION_LIST_RE-EXECUTE LISTBASE+$030

Description: Toggle List FIFO Retransmit Input.
Example Syntax: MOVE.L DUMMY L_INSTRUCTION_LIST_RE-EXECUTE

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4. {set list FIFO re-ex input true, SRT;}
C5: {set list FIFO re-ex input true, SRT;}
C6: {set list FIFO re-ex input true, SRT;}
Cr. {set list FIFO re-ex input true, SRTO

exit;}

Novmber 1, 1995 117

Appendix A - FPORT Controller List Mode Instruction Set

4.2.24 GENERATE_FPCREQ (IRQ)

GENERATE_FPCREQ (IRQ) LISTBASE+$01C

Description: Toggle FPCREQ interrupt to CPU.
Example Syntax: MOVE.L DUMMY,L_GENERATE_FPCREQ

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: { set FPCREQ interrupt line true, FPCREQLL}
C5: {set FPCREQ interrupt line true, FPCREQL;
exit;}

118 November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.25 POLL HALT REQUEST

POLL_HALT_REQUEST LISTBASE+$034

Description: Check for HALT_REQUEST from CPU. Halt Sequencer if true, exit if false.
Example Syntax: MOVE.L DUMMY,L_POLL_HALT_REQUEST
Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4. delay;
C5: if HALT_REQUEST {return processor acknowledge A, FDSACK* [J,goto C6;}
else exit;
Ce6: {return processor acknowledge B, FDSACK* [}
C7. goto C7 [*stay here forever to “HALT” the sequencer*/

Novmber 1, 1995 119

Appendix A - FPORT Controller List Mode Instruction Set

4.2.26 DELAY2

DELAY2 LISTBASE+$038

Description: Cause a 2 microsecond delay between previous instruction completion, and following instruction
initiation.

Example Syntax: MOVE.L DUMMY, L_DELAY2

Operation: CL: FPORT select;
Cc2 FPORT instruction fetch;

C3 instruction dispatch;

C4. load Sequencer counter with 31d;

C5: decrement Sequencer counter and loop to C5 until counter = 0;
C6: exit;

120 November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.27 DELAY10

DELAY10 LISTBASE+$03C

Description: Cause a 10 microsecond delay between previous instruction completion, and following instruction
initiation.

Example Syntax: MOVE.L DUMMY,L_DELAY10

Operation: CL: FPORT select;
Cc2 FPORT instruction fetch;

C3 instruction dispatch;

C4. load Sequencer counter with 191d,;

C5: decrement Sequencer counter and loop to C5 until counter = 0;
C6: exit;

Novmber 1, 1995 121

Appendix A - FPORT Controller List Mode Instruction Set

4.2.28 DELAY100

DELAY100

LISTBASE+$040

Description: Cause a 100 microsecond delay between previous instruction completion, and following instruction
initiation.
Example Syntax: MOVE.L DUMMY,L_DELAY2
Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4. load Sequencer counter with 10d;
C5: push Sequencer counter value into stack and load counter with 177d;
Cé6: decrement Sequencer counter and loop to C6 until counter = 0;
C7. load Sequencer counter with value popped from stack;
cs: decrement Sequencer counter and loop to C5 until counter = 0;
Co: delay
C10: exit;

122

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.29 SEQUENCER NULL

SEQUENCER_NULL LISTBASE+$020

Description: Accessthe FPORT Controller without performing any operation.
Example Syntax: MOVE.L DUMMY,L_SEQUENCER_NULL

Operation: CL: FPORT select;
Cc2 FPORT instruction fetch;

C3 instruction dispatch;
C4. { return sequencer status,
exit;}

Novmber 1, 1995 123

Appendix A - FPORT Controller List Mode Instruction Set

4.2.30 BULB TEST

BULB_TEST

LISTBASE+$028

Description: Diagnostic to set al driven FASTBUS lines true.
Example Syntax: MOVE.L DUMMY,L_ BULB_TEST

Operation: CL: FPORT select;

C2 FPORT instruction fetch;

C3 instruction dispatch;

C4: { Set FPCREQ interrupt; FPCREQ[],
latch output data,
EG=1; FDEG[],
RD=1; FDRD[],
MS=7; FDM SO[},FDM S1[0,FDM S2[],
DK=1; FSDK[],
DS=1; FSDS[,
AS=1; FSAS,O
goto C4}

124

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.31 LOCAL COUNTER LOAD

LOCAL_COUNTER_LOAD LISTBASE+$010

Description: Initialize Local Word Counter for block transfer.
Example Syntax: MOVE.L COUNT,L_LOCAL_COUNTER_LOAD

Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4: {local counter mode = load;} LC10
C5: {local counter mode = hold;} LC10
Co: return sequencer status,
C7. delay cycle;
cs: delay cycle

Note: The counter isloaded from the low order 12 bits of COUNT.

Novmber 1, 1995 125

Appendix A - FPORT Controller List Mode Instruction Set

4.2.32 LOCAL COUNTER READ

LOCAL_COUNTER_READ

SLOWBASE+$014

Description: Transfers current value of Local Word Counter into Data FIFO.
Example Syntax: MOVE.L DUMMY ,L_LOCAL_COUNTER_READ
Operation: CL: FPORT select;

C2 FPORT instruction fetch;

C3 instruction dispatch;

C4: {local counter mode = read;} SLCOEL

C5: return sequencer status,

C6: delay cycle;

C7. delay cycle;

126

November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.33 FIFO WRITE DATA

FIFO_WRITE_DATA

LISTBASE+$018

Description: Write asingle word from the processor to the Data FIFO.
Example Syntax: MOVE.L DATA,L_FIFO_WRITE_DATA
Operation: CL: FPORT select;

C2 FPORT instruction fetch;

C3 instruction dispatch;

C4: {clock FIFO input;} SDwO

C5: { clock global word counter;} FCLKO

Co: return sequencer status,

C7. delay cycle;

cs: delay cycle;

Novmber 1, 1995

127

Appendix A - FPORT Controller List Mode Instruction Set

4.2.34 END OF EVENT

END_OF_EVENT LISTBASE+$024

Description: Write dummy word to the data FIFO with the End-Of-Event bit set, and send Control EOE to
OPORT to start output.

Example Syntax: MOVE.L DUMMY,L_END_OF EVENT

Operation: CL: FPORT select;

C2 FPORT instruction fetch;

C3 instruction dispatch;

C4. set EOE flag to data FIFO; DEOED
set FIFO datawrite; SDWO

C5: negate FIFO data write;

C6: set FIFO datawrite; SDWL,

C7. negate FIFO datawrite
negate EOE flag to data FIFO
set EOE flag to Output Port; CEOELS;

cs: hold EOE flag to Output Port true
return sequencer status;

128 November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

4.2.35 TRIGGER HOLD WITH HALT REQUEST

TRIGGER_HOLD _WITH_HALT_REQUEST LISTBASE+$02C

Description:

Poll Trigger FIFO empty flag and Halt Request from CPU. If TFIFO is not empty, then exit, elseif
HALT_REQUEST, then halt, else wait.

Example Syntax: MOVE.L DUMMY,L_TRIGGER_STROBE HOLD_WITH_HALT_REQUEST
Operation: CL: FPORT select;
C2 FPORT instruction fetch;
C3 instruction dispatch;
C4. delay;
C5: if IRQ(SEQINT) goto INTF;
elseif THFO_NOT_EMPTY {exit;}
elseif HALT_REQUEST {return processor acknowledge A, FDSACK* [],goto C6;}
else {goto C5;}
Ce6: {return processor acknowledge B, FDSACK* [}
C7. goto C7 [*stay here forever to “HALT” the sequencer*/

Novmber 1, 1995 129

Appendix A - FPORT Controller List Mode Instruction Set

PIPELINE_TERMINATE Internal Subroutine

Description: Internal routine to terminate pipelined transfers.

Example Syntax:

Operation: CL: if SS1(FRSS1) clock global work counter; FCLKO
C2 if IRQ(SEQINT) goto INTF;
eseif DS(FRDS) continue; TIMERO
else goto C8;

/* termination routine for odd word count transfer */
* check that DK is high */
/* set DS low and wait for DK low */

C3: if IRQ(SEQINT) goto INTF;
else I DK(! FRDK) goto C3; TIMERO
C4: continue; [* delay cycle*/
C5: continue; [* delay cycle*/
Ce6: if IRQ(SEQINT) goto INTF;
elsef WT(FRWT) goto C6;
else {clock global word counter; FCLKO
DS=0;} FCDSO
Cr. if IRQ(SEQINT) goto INTF;

elseif ! DK(! FRDK) {RD=0; FDRDO
return sequencer status
exit;}
else goto C7; TIMERO
/* termination routine for even word count transfer */
/* check that DK islow */

C8:if IRQ(SEQINT) goto INTF;
elseif | DK(! FRDK) {reset short timer; TIMERD
return sequencer status}
else goto C8;
C9:continue;
C10:continue;
Cll:exit;

130 November 1, 1995

Appendix A - FPORT Controller List Mode I nstruction Set

INTF Internal Subroutine

Description: Internal routine to abort instruction on error interrupt.
INTF assumes that processor acknowledge has already been returned.
Exit the current FASTBUS operation by returning all signalsto inactive state.

Operation: CL: {disable transceivers,
AS=0; FCASO
DS=0; FCDS
DK=0;} FCDK[O
Cc2. delay cycle; [* processor deselect */
C3: exit;

Novmber 1, 1995 131

Appendix B - FSCC PartsList

5. Appendix B - FSCC Parts List

132 November 1, 1995

Appendix B - FSCC PartsList

Iltem |Quan Manf. # Description Manf.
1 1 MP037-3.6864 MHz 3.6864 MHz Crystal CTS
2 3 .01uF Non-Polarized Capacitor
3 12 8134-HC-6P2 .057" FUSE Sockets AUGAT
4 5 .1uF 25V Non-Polarized Capacitor
5 125 .1uF Ceramic, Dip Cap
6 3 1077-3 PC mount Coaxial Connector, K-Loc Kings
7 1 1074-1 Panel Mount Coaxial Connector, K-Loc Kings
8 1 4-2-2 Ground Lug for Panel Mount K-Loc Kings

Connector

7 3 4310R-101-101 10 Pin Sip PAK, 100 Ohms Bourns
8 2 SL-110-G-19 10 Pin Sip Socket Samtec
9 2 4310R-102-101 10 Pin Sip, 100 Ohms, 5 Individual Res. Bourns
10 2 7039-SS MOD E=1/2 10/32 Shoulder Screws R.A.F. Elect.
11 1 100pF Non-Polarized Capacitor
12 2 PAL1016P8JC 10KH ECL PAL TI
13 3 ICO-316-SGG 16 Pin Dip Socket, 300 mils wide Samtec
14 2 4310R-101-102 1K Ohm, 10-Pin Sip PAK Bourns
15 1 1N914 1N914 Diode Motorola
16 1 ICO-320-SGG 20 Pin Dip Socket, 300 mils wide Samtec
17 1 MP200-20MHz 20.000 MHz Crystal CTS
18 2 20pF Non-Polarized Capacitor
19 16 GAL22V10-15LP 22V10 Reprogramable AND-OR Array Lattice
20 1 GAL20RA10-15LP 20RA10 Reprogramable PAL Lattice
21 2 EPM5128JC-1 128 macrocell EPLD Altera
22 19 ICO-324-SGG 24 Pin Dip Socket, 300 mils wide Samtec
23 7 110-99-328-41-001 28 Pin Dip Socket, 300 mils wide Preci-Dip
24 15 ICO-628-SGG 28 Pin Dip Socket, 600 mils wide Samtec
25 8 ICO-432-SGG 32 Pin Dip Socket, 400 mils wide Samtec
26 8 ICO-632-SGG 32 Pin Dip Socket, 600 mils wide Samtec
27 2 68 Pin JLCC Socket AMP
28 1 Single Pin Socket Samtec
29 1 CPAS-114-ZSGG-13A 114 Pin Grid Array Socket Samtec
30 2 BBS-132-T-A Board to Board Stand-off Socket Samtec
31 1 Board to Board Stand-off Pin Samtec
32 1 2 x 5 pin, right angle jumper block Samtec
33 6 2-pin slide on jumper
34 1 IDT7133S70G 2K X 16-Bit, Dual-Port RAM (Master) IDT
35 1 IDT7143S70G 2K X 16-Bit, Dual-Port RAM (Slave) IDT
36 1 MC68020RC20 32-Bit Microprocessor (20 MHz) Motorola
38 8 CXK581020SP-45 128K X 8-Bit CMOS 45ns Static RAM Sony
39 2 RA0.304NYL 4-Pin LEMO Connector LEMO
40 4 4-40 X 1/4" Bind Head Screw
41 1 MX055GA-2C-40 MHz 40 MHz Oscillator CTS

Novmber 1, 1995

133

Appendix B - FSCC PartsList

42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

77
78
80
81
82
83
84

A O WL NPEP PO

N R R O R NR R R RN

AW DN WDNRPRPNRPPRRPREREPRPPRP

[

10

ICO-640-SGG
ICA-648-SGG
MC10H166

2VP5U9

AM27C512-120
M27C4001-80XFI

MVAS-68-ZSGG-11
PT10312
N74F823N
558-0202-003
558-0302-003
MC10H131
SCN68681C1N40
BT501KC
P82C501-10MHz
DP8392A
0882-MB-199070

534974-9
1-102585-3

DAHO17
SN74AS832BN
P82586-10MHz
3428-5302
MC68901
LM555CN
N74F545N
N74F1244
N74F646N
N74F825N
N74F574N

N74F573N

SN74LS38
227726-1
LH5499-35
LH5496-35
LH5496D-20
IDT72413L45P
MC68230P10

40 Pin Dip Socket, 600 mils wide
48 Pin Dip Socket, 600 mils wide
5-Bit Magnitude Comparator

5pF Non-Polarized Capacitor
5V-IN,9V-OUT,DC-DC Converter
6.8uF Polarized Capacitor

64K X 8 Bit CMOS EPROM 120 ns
512K X 8 Bit CMOS EPROM 80 ns

68 Pin Grid Array Socket

75uH, Pulse Transformer

9-Bit D-Type Edge-Triggered Flip
Dialight Green LED with Integral RES
Dialight Yellow LED with Integral RES
Dual D-Type Master-Slave Flip-Flop
Duart

ECL/TTL Octal Transceiver/Translator
Ethernet Serial Interface

Ethernet Transceiver Chip

FASTBUS Front Panel
Bracket
FASTBUS Module Auxiliary Connector

FASTBUS Module Segment Connector
FSCC Front Panel

FSCC P.C. Board

FSCC Trigger FIFO Daughter Board
HEX 2-Input or Drivers

Mounting

Local Area Network Coprocessor

Male 20-Pin 100M X 100M Dip Header
Multi-Function Peripheral

NES5S55 Precision Timer

Octal Bi-directional Transceiver, 3-state
Octal Buffer and Driver, 3-State

Octal Bus Transceiver, 3-State

Octal D-Type Edge-Triggered Flip-Flops

Octal D-Type Flip-Flop w/3-State
Outputs
Octal Transparent Latch w/3-State
Outputs

Open-Collector TTL NAND Gate
Isolated BNC Solder Jack Assembly
Parallel 4096 x 9-Bit FIFO 35 ns
Parallel 512 X 9-Bit FIFO 35 ns
Parallel 512 X 9-Bit FIFO 20 ns

64 x 5-bit FIFO chip

Parallel Interface/Timer

Samtec
Samtec
Motorola

Reliability

AMD

SGS
Thompson
Samtec

Datatronics
Signetics
Dialight
Dialight
Motorola
Signetics
Brooktree
Intel
National

FNAL
Drawing
AMP

AMP

TI

Intel

3M
Motorola
RCA
Signetics
Signetics
Signetics
Signetics
Signetics

Signetics

Signetics
AMP
Sharp
Sharp
Sharp
IDT
Motorola

134

November 1, 1995

Appendix B - FSCC PartsList

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
110

P P PR ANRPRRRNRANPR

= [
o P P 3

P WA P P ODN O

111
112

= 00

251.010
251.005
251.001
ITCE-5

MC10H103
UA96174
UA96175

MAX233C
8121-S-D-A6-G-E
EPS448DC-25
SAM448-30
DS1386-8K

DAH-017PC Rev b

10 Amp Subminiature Fuse

5 Amp Subminiature Fuse

1 Amp Subminiature Fuse

Tranzorb for 5 and 5.2 Volt supply
Tranzorb for 2 Volt supply

Quad 2-Input or Gate

Quadruple Differential Line Driver
Quadruple Differential Line Receiver
Resistor 1.5K 1/8W 5%

Resistor 100K 1/8W 5%

Resistor 10K 1/8W 5%

Resistor 150 1/8W 5%

Resistor 1K 1/8W 5%

Resistor 1K 1/8W 1%

Resistor 1M 1/8W 5%

Resistor 20 1/4W 5%

Resistor 220 1/8W 5%

Resistor 240 1/4W 5%

Resistor 39 1/8W 5%

RS232 Driver/Receiver

SPDT Push Button Switch
Stand-Alone Microsequencer 25 MHz
Stand-Alone Microsequencer 30 MHz

Watchdog Timekeeper, R/TClock,

NVRAM
3-pin jumper block
Trigger FIFO Child Board Assembly

Pico
Pico
Pico

Motorola
Fairchild
Fairchild

Maxim

C&K

Altera
Waferscale
Dallas Semi.

Bira Systems

Novmber 1, 1995

135

Appendix C - FSCC Documentation

6. Appendix C - FSCC Documentation

136 November 1, 1995

Appendix C - FSCC Documentatin

Fermilab Drawing Numbers

FNAL # TitleDescription
0882-MB-199070 Mounting Bracket FASTBUS Module Front Panel
Mount
0880.000-ED-215714 FSCC/VDAS Interface E771 FSCC/VDAS interface
schematic
0880.000-ED-269065 FSCC/VDAS Interface E791 FSCC/VDAS interface
schematic
0880.000-AC-269129 FSCC Layer 1 Trace Layer 1
0880.000-AC-269130 FSCC Layer 2 -2.0V & -5.2V Layer 2
0880.000-AC-269131 FSCC Layer 3 Ground Layer 3
0880.000-AC-269132 FSCC Layer 4 +5.0V Layer 4
0880.000-AC-269133 FSCC Layer 5 Trace Layer 5
0880.000-AC-269134 FSCC Top Silk Top Silkscreen Photo
0880.000-AC-269135 FSCC Bot Silk Bottom Silkscreen Photo
0880.000-AC-269136 FSCC Solder Mask Top & Bot. Solder Mask
0880.000-AC-269137 FSCC Front Panel Front Panel Silkscreen Photo
0880.000-MD-269138 FSCC Assembly Assembly drawing
0880.000-MD-269139 FSCC Front Panel Front Panel Mechanical Drawing
0880.000-MD-269140 FSCC Mechanical Board Dimensions & Pads
0880.000-MD-269141 FSCC Test Interface (FSCCTI) Test Board Schematic
0880.000-MD-269143 FSCC Schematic 11 Page Schematic and Block
Diagram

Fermilab Documents

FASTBUS Smart Crate Controller - PC3, Design Specification
Fermilab Computing Division

Mark Bernett - Online and Data Acquisition Software Groups

Mark Bowden, Rick Kwarciany, John Urish - Data Acquisition Electronics Group
Fermilab Physics Department Gustavo Cancelo

Diagnosticsfor the FASTBUS Smart Crate Controller - PN417
Fermilab Computing Division

Mark Bernett, Dave Slimmer - Online and Data Acquisition Software Groups
Fermilab Computing Division

Richard Kwarciany, John Urish - Data Acquisition Electronics Group

Release Notesfor SCG68K V2.3 - PN 376
David M. Berg, Bryan MacKinnon - Fermilab Computing Division
Online Systems Software Group

SCG68K User’s Guide and Reference- PN369
Peter Heinicke, David Berg, Bryan MacKinnon, Tom Nicinski, Gene Oleynik -

Novmber 1, 1995 137

Appendix C - FSCC Documentation

Fermilab Computing Division, Online Systems and Data Acquisition Software Groups

Serial Port Driver for the PAN-DA pSOS Environment - PN379.2
Bryan MacKinnon - Fermilab Computing Division, Data Acquisition Software Group

Dart Data Acuisition System Data, Permit & Trigger Link Interface Specification - ESE-DART-950511
John Anderson, Ed Barsotti - Fermilab Computing Division, ESE Department.

Non-Fermilab Documents

|EEE Standard FASTBUS
|EEE 960
Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York, New York - 10017
68020 32-Bit Microprocessor Manual
Motorola Literature Distribution
P.O. Box 20912
Phoenix, AZ 85036
FASTBUS Standard Routines
DOE/ER 0325
National Technical Information Service, U.S. Dept. of Commerce
Springfield, Virginia22161

FSCC Programmable Devices

FSCC Version PC4b Microcode and PLD Source Listings- HN 137
Mark Bowden, Gustavo Cancelo, Richard Kwarciany - Fermilab Computing Division, Data Acquisition Hardware
Group, Online Systems Department.

138 November 1, 1995

Appendix D - EPROM Labeling

7. Appendix D - FSCC EPROM Labeling

Novmber 1, 1995 139

Appendix D - EPROM Labeling

ROM BANK 1; OPERATING SYSTEM AND FSCC DIAGNOSTICS

PROM BOARD BYTE POSTION (0-3)
(FSCC ROM BANK 1)
+ VERSION NUMBER
FSCCB1 V 1.0
PSOS/PROBE [<— APPLICATION
092090/1F43
T L CHECKSUM

RELEASE DATE

ROM BANK 2; SYSTEM OR INDIVIDUAL MODULE DIAGNOSTICS

OPTION 1; System Diagnostic Tests

(FSCC ROM BANK 0)

+7 VERSION NUMBER

FSCCBO V 1.0
SSD SYST DIAG <— APPLICATION
092090/1F43

T L S

l PROM BOARD BYTE POSTION (0-3)

CHECKSUM
RELEASE DATE

OPTION 2; Individual Module Tests
l PROM BOARD BYTE POSTION (0-3)

VERSION NUMBER

FSCCO V 1.0
SSD MOD DIAG [APPLICATION
092090/1F43
CHECKSUM
RELEASE DATE

140

November 1, 1995

Appendix E - FSCC PC4 Assembly Drawing

8. Appendix E - FSCC PC4 Assembly Drawing

Novmber 1, 1995 141

Appendix E - FSCC PC4 Assembly Drawing

£00-Z0K0-8GSdM =
S
(TN T
% (IK]
ﬁ? o876 E" :
g; L] 10"
. 1] Gaisz sose J[Mfeawe] ’
i |
san
; Bn wn 32t
1
H =
)] 2 _al:vua
} l % i 2
216002 L7v08 Zrsaca 1avo0e = 4
t £ 2
c L
LUE BEELALIE B R e2ztn T M o H
- ek
Tn
2180¢2 13%06 218342 139508
M I — 98528 s
i &3 TN rwm mi BZI zana
ﬁ BrFSdl L3eos 8kFSd3 wwooe
BoIN» £0C », s0ins $QAf 0 (130
216022 e 2ve0cz Lavos | fesannceg roies] Jesusaieg smea
e 1 ais El}mzz Tow]| A]S ame]
.
210 e e | EZ 20 cae w m’" Bmoifd
o
s pee B s
sttne2ar t1ine 2gr . > g
2reasz 1m0 210002 o ([gy one BB e EhER
I 1IwD08 - "
Y TR e
EED 2250 e3me mn s34 m | pOPrSdd iwom Brysda 41006 w21y O Y 5 3w
£=n I'd ~
var QD E £LRAFE "
} % ' . i 8
Lrveon — . 2 » "
N = Frrr o 52 g 2
S
B2 0230 ¢ 5 BB 210 rwmam 260 al aY EE‘ s 5 a £
13008 D2-96vE KT [OW = -
o] A
% mcnsJ % 130008 ‘ a E Wilnea oot wea Gl ¢ [ZiE]
g
- ~ H N
0 10 1DEI0S T AT208
[@ s enew @B o saen ° E||E il]3 pinez —|§
180 <EN
i i [ay]
oy
rA:nl
} Am—l } 10 o B}““‘z 5 A EL Treive) } credre]
K osn s£n et °n
S1IN 13w W EEF (TN) uM e E> Foe 0ingz IE g P, °"‘“|§
o B B H EE} E}
a % Loeoe spoamrs wa] [tooe ss-sers
1yoes veE H1 1TH006 SE-96P% H
} 1woea | } 130 \ B}) omzz|: B} 1o omaa]ﬁ Se-9ers L o
ovn sen 1
&2y YT ras om ST aaam o son = L ™ ™
- g §
azzasord) ol § 1708 umez]! § oo gk Kl
el £ &
Sin [cow yon SE-PEKE W1 1mio0e SE-98¥8 KO 1h00s ££-96kE H1 008 ge-oevs M1
b e JIE] ysn ain 0
@ [aley® " B T 3u g T e s
" 3 6 z - E voas p1022] y
o Oa 8 9od [Bl B
H g on E
2
’ « idpoos SE-66rS H 1moos CE-88rC MY § Ao CE-66C H Rt CE-66FC M
E> L3ios °"‘ZZ|§ 20 £5n stn £n
zon
['1-0] =3 m ad
Ml T :h weme] @S g B wewz)
8 . | - mzzé P o - —
CF-06bGHT L8 g E 0ez89 ren =
con n 3 rsmvﬂ 5 vesave |
L =" 3 . @
F {—" LU -
e E . L w:xal _
M
SE-96#S HI ihwns = prn lqos y
. & & =2 |
10518 -
el f o L ven 2 LT y—w—m,, g
) S]
B 2 £ Iy = g uur g
B H 5
]
w t ; m
.- . ém t
Frrsmen __]§ O LN
57 lllSJB
s Fey D 39 D # 3 o - m S Teed]
"‘ «2n
Bs S b Al 1205vd] 8§ | 52 : E T o] 12n o
T inm] £z)
3 %‘E S& o U om F4 £I0
o
184
194
< <

Figure 18 FSCC Component View

142

November 1, 1995

Appendix F - FSCC Version History

9. Appendix F- FSCC Version History

Novmber 1, 1995 143

Appendix F - FSCC Version History

9.1 PC1
Prototype FSCC's were designated version PC1. A small number of PC1 FSCC'’s were built for testing and
proof of concept purposes. PC1 modules were not widely used.

9.2 PC2and PC3
The first production FSCC'’s were designated Version PC2. After some time in use, design changes were
added to these modules. PC3 FSCC'’s were functionally identical to the modified PC2 modules. The difference is
that the newer modules had the changes to the PC2 boards incorporated into the PC board layout.

9.3 PC4
9.3.1 Overview
The primary goals of the FSCC Version PC4 update project were to increase the processor's memory
capacity, to replace obsolete components which were no longer in production, and to be able to complete the
project in a matter of two to four months. It was also desired to maintain backward software compatibility to avoid
unnecessary software redesign.
Secondary goals included expansion of Non-Volatile RAM size, increasing FASTBUS Data FIFO capacity,
adding an instruction FIFO to the FASTBUS List FIFO, and bug fixes.
9.3.2 Replacement of Obsolete Components
Three of the FSCC's functions were implemented in PLD devices which have been discontinued by the
manufacturer. Specifically, the EPB1400 Erasable Programmable Logic Device (EPLD) manufactured by the
Altera Corporation was discontinued in 1991. The Global Word Counter & Header Latch, the Output Port
Controller Interface (not shown on block diagram), and the Ethernet Port Controller to Ethernet Dual Port Memory
Interface (also not shown on block diagram) are the functions affected. The Global Word counter & Header Latch,
and the Output Port Controller Interface were redesigned using EPM5128 EPLD devices also manufactured by the
Altera Corporation. The Ethernet Port Controller to Ethernet Dual Port Memory Interface was redesigned using
conventional PALs (22V10's). All three of the redesigned circuits were completed with backward software
compatibility intact.
9.3.3 Memory Expansion
9.3.3.1 Processor RAM Expansion
All FSCC's produced prior to version PC4 featured Motorola 68020 processors with 256 KBytes of zero
wait state static RAM. The PC4 FSCC's are capable of having up to 4 MBytes of zero wait state RAM installed
when 512K x 8-bit SRAM devices become available. Eight 256K x 8 bit devices can also be installed yielding 2
MBytes of RAM, and 128K x 8-bit devices will give 1 MByte of RAM. Switching between the different sized
devices requires changing jumpers on the board, and changing PAL programming. In order to install more than 1
MByte of RAM, the memory map of the FSCC must also be changed. To make this change, jumpers on the board
must be changed, and some of the processor's control PALs must be reprogrammed. Version PC4 FSCC's with the
current memory map have 1 MByte of RAM installed.
The following FSCC PAL's must be reprogrammed to change RAM configurations:
DECOL1 (Address Decoders)
DECO2
DECO3
DSGEN (Data Strobe Acknowledge Generator)

Table20 FSCC RAM Configuration Options

Total RAM FSCC Version Memory Map Devices Installed
128 KBytes PC3 Version 1 4-32K x 8 bit

256 KBytes PC3 Version 1 8-32K x 8 bit

1 MByte PC4 Version 1 4-256K x 8 bit

2 MBytes PC4 Version 2 8-256K x 8 bit

4 MBytes PC4 Version 2 8-512K x 8 bit

144 November 1, 1995

Appendix F - FSCC Version History

9.3.3.2 Processor EPROM Expansion
EPROM on PC3 and older FSCC's was limited to 512 KBytes running with two wait states. PC4 FSCC's
have 2 MBytes of EPROM installed with the current memory map, and are capable of having 4 MBytes total
installed if the memory map was changed. EPROM on PC4 boards runs with one wait state. Changing the FSCC'’s
memory map involves changing jumpers on the board, and reprogramming the following PALS:
DECOL1 (Address Decoders)
DECO2
DECO3
DSGEN (Data Strobe Acknowledge Generator)
9.3.3.3 Processor NVRAM Expansion
Expanding the Non-Volatile RAM on the PC4 FSCC was done by replacing the DALLAS Semiconductor
DS1286 NVRAM/RTC chip with a DS1386 by the same company. This device is functionally identical to the
DS1286 except that it has 8 K or 32K Bytes of Non-Volatile RAM where the 1286 has only 50 bytes. The PC4
parts list currently specify the 8K devices, although the board will accept the 32K parts. Since these components
are taller than a standard DIP device, it is not possible to use a socket and the NVRAM chip is permanently
installed. Therefore, upgrading to the 32 K devices should only be considered when making new boards.
9.3.4 List FIFO Modifications
In order to alow the FASTBUS List FIFO to be used more easily, eight bits have been added to the List
FIFO to allow FASTBUS Instructions to be stored in the List FIFO as well as FASTBUS data. This eliminates the
need to write special microcode for each application where the List FIFO is used. The microcode driver needed to
use the larger List FIFO is labeled "FBILSTVX" (where X is the version number), and is installed in the "User"
microsequencer sockets. By default, the List FIFO and User microsequencer are disabled, and the Standard
FASTBUS microsequencer is enabled. This alows the FASTBUS interface of the PC4 version of the FSCC to
otherwise function identically to that of the PC3 version.
To usethe List FIFO, it must be reset, loaded with alist of FASTBUS instructions, the User microsequencer
must be enabled, and then the List FIFO must be enabled.
The List FIFO reset line (SRS*) isalow true signal ("0"=reset) which is connected to Parallel Port 1 bit C6.
This bit must be configured as an output, then toggled low to reset the List FIFO. It must be left in a high state
(PP1 bit C6 ="1") to use the List FIFO.

Example:
ORI.B #$40,$0064000C *Set List FIFO Reset hit to not-reset
ANDI.B #$40,$00640004 *Configure List FIFO Reset bit as PP output
ANDI.B #$BF,$0064000C* Set List FIFO Reset hit true (reset)
ORI.B #$40,$0064000C *Set List FIFO Reset hit false (not-reset)

The List FIFO Reset hit is configured as an output, and set false (not-reset) by the FSCC monitor
PROBE/PSOS/DETH (V1.1 and later). Therefore, the first two instructions in the example are not necessary if
this monitor is used.

To load the List FIFO, the list FASTBUS instructions are written to the FIFO in order of execution in a
manner similar to normal FASTBUS instruction execution. The FASTBUS list instruction vectors (lower 10 bits
of memory mapped FASTBUS instruction addresses) are identical to the instruction vectors of the standard
FASTBUS instruction addresses. The address decoder portion of the FASTBUS instruction address (upper 22 bits)
isthe only difference.

Example:
Address Function
00620300 Normal FASTBUS Arbitrate instruction
00600304 Normal FASTBUS Primary Address instruction
006A0300 List FASTBUS Arbitrate instruction
006A 0304 List FASTBUS Primary Address instruction

Novmber 1, 1995 145

Appendix F - FSCC Version History

A complete list of FASTBUS list instructions isincluded in section 2 of the FSCC Manual.
After loading, the List FIFO microcode must be initialized by enabling the User microsequencer with the
following instruction:

MOVE.L #$0,$006C0020 *Select User Microsequencer

This specia microsequencer instruction is the only instruction which is executed by both the standard FASTBUS
microsequencer and the user FASTBUS microsequencer. It causes the User microsegquencer to enable itself, and
causes the Standard FASTBUS microsequencer to disable itself. This instruction must be executed after the
FASTBUS sequencer is taken out of reset, and before any other FASTBUS instructions are executed. Executing
this instruction more than once after a reset has no effect. To return control of the FSCC's FASTBUS interface
back to the standard microsequencer, the FASTBUS interface must be reset. This is done with the SNRESET* hit
in Parallel Port 2, or by pressing the Reset switch on the front panel.

Once the user sequencer is selected, the List FIFO is then enabled by setting the List FIFO Enable bit high
in Parallel Port 2 bit A6. Note that this bit must be configured as an output as in the following example before it
can be set high.

Example:

Set List FIFO enable bit to its default state, configure it as an output, then set it true
ANDI.B #$BF,$00660008 * Set PP2A bit 6 low
ORI.B #%$40,$00660002 *Configure PP2A hit 6 as an output

ORI.B #%$40,$00660008 * Set PP2A bit 6 high (List FIFO enabled)

The List FIFO Enable bit becoming true will allow the microsequencer to start executing the List.
The List FIFO Retransmit line is available at Parallel Port 2 bit B5. By toggling this bit list execution can
be repeated without rel oading the FIFO.

Example:

Set List Retransmit bit to its non-active state, then configure it as aparallel port output
ORI.B #$20,$00660009 *Set LRT* bit initial condition (Low true signal)
ORI.B #$20,$00660002 *Configure LRT* bit as an output

Toggle List Retransmit bit true, then false to re-execute FASTBUS instruction list
ANDI.B #$DF,$00660009 * Set LRT* hit true
ORI.B #$20,$00660009 *Set LRT* bit false

Re-execution of the list will start with LRT* being set true.

Note that the List Retransmit bit and the List FIFO Enable bit are pulled in hardware to their default (non-
active) levels. Therefore, if these bits are not configured as outputs, the FASTBUS interface will function
identically to a version PC3 board. Version 1.2 and greater of the FSCC standard monitor PROBE/PSOS/DETH
will have the List FIFO Retransmit and List FIFO Enable bits configured as parallel port outputs, and set to their
non-active states by default. If thisor alater version of the standard FSCC monitor is used, the first two processor
instructions in the previous two examples may be deleted.

9.3.5 Data FIFO Modifications

PC3 FSCC's have a 2K x 32-bit FASTBUS data FIFO'’s installed. PC4 FSCC's have a 4K x 32-hit

FASTBUS data FIFO installed. The PC4 data FIFO is otherwise functionally identical to the PC3 Data FIFO.
9.3.6 Tranzorb and Fusing Changes

In order to enhance the FSCC's ahility to withstand power supply over voltage failures, PC4 FSCC's have

been equipped with tranzorbs on the +5 Valt, -5.2 Volt, and -2 Volt power supplies. PC3 FSCC's also used parallel

146 November 1, 1995

Appendix F - FSCC Version History

fuses on the +5, and -5.2 Volt power supplies. These have been replaced with one larger fuse on each of these two
supplies.
9.3.7 Bug Fixes

A hardware bug involving slave operation of the FASTBUS interface in PC3 and earlier FSCC's has been
identified and corrected in PC4 FSCC’s. The bug involves the FSCC'’s ahility to respond to being addressed on
FASTBUS. Specificaly, PC3 boards have no ahility to know if they have been addressed in CSR or DATA space.
PC4 FSCC's have the FASTBUS line M SO latched, and connected to Parallel Port 2 bit A5. After the FSCC has
been addressed as a dave on FASTBUS, the status of PP2 hit A5 can be tested to determine if the address cycle
was to CSR or DATA space. If the hit isa"1" the address cycle isto CSR space, if the bit is a"0" the address
cycleisto DATA space.

Two microcode bugs have also been identified in the standard FASTBUS microcode FBSEQV 2 dated 9-24-
90. The first problem isthat FASTBUS GK is not cleared by either a FASTBUS sequencer reset, or a hard reset.
This bug has been fixed in FBSEQV2 dated 8-18-92 which is installed on al PC4 FSCC's. The second bug
involves an incorrect MS code during Broadcast CSR Space primary address cycles. This bug has also been
corrected in the current version of the microcode. This version of the standard microcode can also be installed on
PC3 FSCC's.

Novmber 1, 1995 147

Appendix F - FSCC Version History

9.4 PC4a

9.4.1 Overview
The primary goals of the PC4a update, were to modify the FSCC to enable it to work more effectively in the
DART DAQ architecture, to add memory and other features to enhance programming ease, and to correct
hardware bugs which were discovered after the PC4 was produced.

9.4.2 Front Panel Trigger Port Enhancements
In order to take advantage of the ability of some front end modules to internally buffer events, the FSCC needed to
be able to buffer event triggers, and trigger ID’s. To this end, a 64 word deep Trigger FIFO was added to the Front
Panel Trigger Input Port. Trigger strobes received at the port now connect to the Trigger FIFO’s “Shift In” input.
Trigger ID values at the port are then clocked into the Trigger FIFO. The FPORT controller now monitors the
Trigger FIFO’s “Output Ready” output, instead of the Trigger Strobe input directly. The Trigger_Strobe_Hold
FPORT instruction tests the Output Ready line, and waits for it to go true. When this happens, it proceeds with its
readout instruction list. Presumably, this list would contain an End_Of Event instruction which will cause the
OPORT controller to start outputting the event. The End_Of_Event instruction also clocks the next Trigger ID out
of the Trigger FIFO, so the proper Trigger ID will be attached to each event. The data outputs of the Trigger FIFO
containing the Trigger ID values, now connect directly to the Header & Counter logic, allowing the Trigger ID to
be automatically written directly into the Header field of the leading word count word. This feature of
automatically writing the Trigger ID values directly into the Header may be enabled by setting a bit in the H&C
Control register.

In order to prevent the Trigger FIFO from being overrun by triggers, a Trigger Hold Off output is provided. This
output is jumper configurable to go true on one of four possible conditions. Trigger FIFO Almost Full (56 or more
Triggers are queued), Trigger FIFO Half Full (32 or more Triggers are queued), Trigger FIFO Empty, and
End_Of _Event (signals that the event readout is complete).

9.4.3 Suppressing Zero Word Events (SZE)
In some systems, it is possible for the front end modules to not have data after some events. If the FSCC’s FPORT
controller is running in a loop where it reads out the crate and outputs the data after each trigger is received, the
OPORT controller would output a Word Count Word with a value of zero, and then no data. In order to reduce the
amount of meaningless data collected, it is sometimes desirable to suppress these “Word Count only” events. The
ability to suppress these events is provided for in PC4a FSCC’s. When enabled, if the OPORT controller pulls a
zero word event from the Data FIFO, it will simply pass the token without outputting the zero word event.
Enabling the SZE feature does not effect OPORT output rate or operating mode settings. The feature is enabled by
setting a control bit in the OPORT Control register. The Reset default state of the SZE bit is zero (disabled).

9.4.4 Write Protect Non-Volatile RAM
To protect the Non-Volatile RAM and the Real Time Clock (RTC) from inadvertently being overwritten, a write
protect/enable bit has been added. By default, the NVRAM/RTC is Read-Only. To write to the NVRAM/RTC,
the write enable bit must be set. The NVRAM and the Real Time Clock can then be accessed normally until the
write protect bit is set.

9.4.5 FPORT Microcode Enhancements
Six new microcode instructions have been added to PC4a modules. Five of these instructions are List Mode
instructions, and one is a Normal FPORT instruction. Three of the five List Mode instructions are delay
instructions. The FPORT can now be programmed to pause for a given amount of time before executing the next
instruction. This is done by inserting a delay instruction at the desired point, into the list like any other instruction.
A pause for two, ten, or one hundred microseconds is generated upon execution of one of the three instructions.
Delay instructions can also be chained in any order.

148 November 1, 1995

Appendix F - FSCC Version History

A POLL_HALT REQUEST (PHR) instruction has also been added. This List FPORT instruction is inserted into

the list at a convenient stopping point, to alow a graceful halting of FPORT List execution when the List is

repeating itself. Each time the FPORT executes the PHR instruction, it checks to see if an FPORT List Halt

Request instruction has been executed by the processor. If the processor hasn’t executed such an instruction, then
list execution continues. If the processor has requested a List Halt, then the FPORT halts list execution. The
processor FPORT List Halt Request instruction can only work if the PHR instruction is executed by the FPORT.

If the processor Halt Request instruction is executed, but the FPORT does not execute a PHR instruction within the
Long Time-out period, a 68020 bus error exception will occur. The FPORT must be reset to take it out of the
halted state.

The GENERATE_FPCREQ instruction generates an FPCREQ interrupt when executed. If it is desired to cause a
CPU interrupt at some point during list execution, this list instruction is inserted at the desired point in the list. The
FPCREQ interrupt is then enabled in the interrupt controller. Some care must be exercised in the use of this
instruction, since if the GENERATE_FPCREQ instruction is in a list which is repeating itself, it is possible to
overwhelm the operating system with interrupts, causing an apparent CPU hang. In general, use of this instruction
in a self repeating list should be avoided, unless it is known that the minimum time between interrupts will be long
enough for the CPU to service them.

In order to facilitate the use of FSCC’s in DAQ system diagnostics, it was desired to be able to transmit the same
data out of the FSCC’s Data FIFO many times without reading out any slaves. This is possible by first filling the
Data FIFO, and executing an End_Of_Event instruction to output the first data block. Then toggling the Data
FIFO Retransmit bit, and executing the End_Of Event instruction, instead of filing the Data FIFO each
subsequent time the data is to be output. This bit sets the Data FIFO’s internal pointers to zero, so that the
previously outputted data can be output again. A problem arises when an End_Of_Event instruction is executed to
output the event. The End_Of_Event instruction tells the OPORT controller to start outputting data, but it also
writes the End_Of _Event flag into the back of the Data FIFO to delineate events in the FIFO. The OPORT
controller then pulls the data out of the FIFO and outputs it until it sees the End_Of_Event flag pop out. Under
normal use, when the Data FIFO is being filled by reading out front end boards over FASTBUS, this is no
problem, but if the Data FIFO is being Retransmitted, then there will already be an End_Of_Event flag in the FIFO
from the previous event. Now when the End_Of Event instruction is executed to tell the OPORT to start
outputting the data, another End_Of Event flag is inserted into the Data FIFO. If the test program is looping
where it Retransmits the Data FIFO and then executes an End_Of_Event instruction, the Data FIFO will eventually
fill up with End_Of_Event flags, causing an FPORT error. To prevent this from happening, a special version of
the End_Of_Event instruction was included on PC4a boards. This instruction functions identically to the normal
End_Of_Event instruction, except that it does not write an End_Of_Event flag into the Data FIFO. This Normal
(Non-List) FPORT instruction is called End_Of_Event Rexmit.

9.4.6 Add Control FIFO Status Bit
To give the CPU, and the user more information about what the FSCC is doing at the current time, the Control
FIFO Empty flag has been mapped into an OPORT status register. When this bit reads as a zero, this means that
there are no Header/Word Count words in the Control FIFO. When an event is read into the FSCC’s Data FIFO,
and an End_Of Event instruction is executed, the Header/Word Count word is inserted into the Control FIFO,
causing the Status bit to read high. As soon as the OPORT controller starts outputting the data, it pulls the word
out of the Control FIFO, and the Status bit will go low again. Effectively, the Status bit being true means that there
is at least one complete event in the Data FIFO which is not yet being output. If the Status bit reads low, this does
not mean that there is no Data in the Data FIFO, it may contain a part of an event which is currently either being
read out, or being output.

9.4.7 Modify OPORT Controller to Comply with DART Protocol
The DART data stream protocol requires that data blocks on the data stream cable be delineated by a control signal
pulse. This control signal is called End_Of Record (EOR). The PC4a OPORT controller can drive EOR after it
outputs the last data word, and before it passes the token, if it is operating in Event_ EOR mode.

Novmber 1, 1995 149

Appendix F - FSCC Version History

The PC4a OPORT controller has also been enhanced by adding a variable data output rate feature. By default, the
OPORT outputs data at a 10 MHz rate (40 MBytes / Sec). If desired, this rate can be reduced through software.
The two other supported data rates are 6.67 MHz (26.68 MBytes/ Sec), and 5.0 MHz (20 MBytes/ Sec).

9.4.8 Expand CPU Memory Map
In order to allow the use of the second band of PROM, and to allow the installation of larger RAM chips to expand
available program RAM, the CPU memory map was changed to alow for larger RAM and ROM areas.

150 November 1, 1995

Appendix F - FSCC Version History

9.5 PCi4b

9.5.1 Overview
The primary goal of the PC4b modifications were to change the FSCC to allow it to meet the newly revised DART
(Data Acquisition Real Time) Interface Specification (Document Number: ESE-DART-950511-A). The DART
Interface Specification defines the physical medium, data format, and timing of the RS-485 data stream,
PERMIT_IN/PERMIT_OUT token passing links, and the Event Trigger Link.

Secondary goals of the PC4b changes were to enhance data flow control by routing the Data FIFO status flags into
the Trigger Hold-Off Output logic, and to fix two design flaws.

9.5.2 DART Interface Specification Changes

9.5.2.1 Datalink Changes (OPORT)
Most of the changes required to meet the DART Data Link Specification, actualy involved changes to the
auxiliary card (FSCC-DARTAC). However, there were some changes to the FSCC itself. The timing of the
enable lines to the RS-485 drivers on the FSCC-DARTAC was changed to enable the driver for the Data Strobe
line 50ns before the drivers for the data lines. This was done to help prevent false Data Strobe transitions due to
crosstalk on the data cable. The OPORT controller was also changed to prevent data transitions for 100ns after the
data drivers are enabled.

Supported OPORT modes have been redefined to more realistically reflect the way the OPORT is actually used.
The designation Event_ Mode has been renamed Token Middle. Force Event Mode is now known as
Token_First, and Event EOR is now Token_L ast. The name changes are to more accurately reflect the function
of the modes, and hopefully, to make programming the FSCC somewhat more intuitive.

Token_Only mode has been added to allow the use of the PC4b as the only data source on a data link. With
previous versions of the FSCC, it was sufficient to set the OPORT into Event Mode (now Token Middle), and
use a LEMO type terminator installed in the PERMIT_IN input. This effectively forced the PERMIT_IN input
true. With the conversion of the PERMIT_IN input to NIM level, putting a terminator into the PERMIT_IN input
does not force the input true, therefore, the new mode was needed.

CPU mode (Control mode) operation of the OPORT is no longer supported. CPU mode allowed data to be written
directly into the Control FIFO, and output as data through the OPORT. This mode was originally thought to be
useful for testing the personality cards, and the data links connected to them. However, it has become obvious that
writing data directly into the Data FIFO is much more useful for testing purposes. To make space in the OPORT
controller for Token_Only mode, the seldom used CPU mode was del eted.

Event_With_Manual_Permit_Out and Permit Out modes are also no longer supported. These modes were
originally designed to allow the readout program to drive End_Of Record and other control lines manually from
the processor. The PC4b OPORT has been enhanced so that End_Of _Record is now driven with the appropriate
timing when the OPORT is set into Token_Last mode. Once configured, the readout code no longer needs to be
concerned about the communication protocol on the data link.

The RS-485 driver for the End_Of_Record signal is now enabled whenever the OPORT is set into Token_Last or
Token_Only modes. The driver isdisabled in all other modes.

The FSCC-DARTAC was changed to alow the Data Strobe pulse to be inverted and lengthened to match the
DART DataLink Specification. The active edge is now the low going edge of the Data Strobe. All termination
SIP resistor packs were removed from the FSCC-DARTAC to alow the use of DART Upstream and Downstream
termination modules, and unused control lines 16/32*, SSTROBE, FEVEN, SPAREO, SPAREL, and SPARE2
were either cut or permanently disabled.

The function of the four DIP switches on the FSCC-DARTAC have been redefined. Switch 1, 3, and 4, now have
no function, and can be left in either the open or closed position. Switch 2 now controls the RS-485 WAIT enable.

Novmber 1, 1995 151

Appendix F - FSCC Version History

When the switch is open, RS-485 WAIT is disabled. WAIT received from the data buffer is ignored. When the
switch is closed, WAIT is enabled. WAIT received from the data buffer is passed to the FSCC and the data
transmission is paused. This switch setting was added to allow the RS-485 cables to be disconnected and till
alow datato be clocked out of the OPORT for testing purposes.

9.5.22 PERMIT Link Changes (PERMIN/PERMOUT)
The most significant change to the front panel PERMIT connectors is that they were changed to NIM level signals
from TTL level signals. The active level for both PERMIT_IN, and PERMIT_OUT, is a NIM “1", which
approximately -0.8 Volts when the line is terminated in 50 ohms. The inactive level is NIM “0” which is
approximately ground level. The FSCC’s PERMIT_IN connector supplies the necessary 50 ohm NIM termination.
PERMIT_IN and PERMIT_OUT were also redefined to be edge triggered signals rather than level triggered.

In order to use the FSCC as the only data source a data cable, the module must think that it is both “first” and
“last” on the PERMIT token passing chain. It must be first so that it starts outputting data without waiting for a
PERMIT_IN on the first event, and it must be last so that it drives the EOR signal on the data cable. With previous
versions of the FSCC, “first and last” mode was done by setting the FSCC into Token_Last (formerly Event EOR)
mode, then putting a 50 ohm terminator into the PERMIT_IN input on the front panel. The terminator forced the
PERMIT_IN input to its active state, so the module always had the token. Since the PERMIT connections were
changed to NIM levels on the PC4b FSCC's, inserting a 50 ohm terminator into the PERMIT_IN input no longer
forces the input to its active state. To allow the PC4b modules to be both “first and last” in the PERMIT chain, a
new mode was added to the Output Port Controller. When using the PC4b FSCC as the only data source on the
data cableToken_Only mode should be used.

9.5.2.3 Trigger Link Changes (Trigger Strobe, and Trigger ID bits)
The RS-485 Trigger Strobe input on the PC4b FSCC has been changed slightly. The active edge of the RS-485
Trigger Strobe has been changed to the low-going edge. The termination resistors have been removed from both
the RS-485 Trigger Strobe and the Trigger ID inputs. An external termination module must now be used. A NIM
level version of the Trigger Strobe input was also added to the PC4b FSCC which is logically ORed with the RS-
485 Trigger Strobe input. This input is also on the front panel.

The Trigger Hold Off (THO) front panel output has been changed from a TTL level signal to a NIM level signal.
The active level for all front panel NIM level signals is a NIM “1” (approximately -0.8 Volts when terminated by a
50 ohm resistor).

9.5.3 Data Flow Control Enhancements
Originally, the FSCC was not designed with multi-event buffering front end modules in mind, for the simple
reason that they did not exist at that time. Since it was desired to use the FSCC with these newer front-end
modules, the Trigger FIFO and the Trigger Hold Off (THO) output was added to the FSCC during the PC4a
upgrade. In an effort to prevent data buffer overflow when the FSCC is used with these modules, two of the
FSCC'’s Data FIFO status flags have been added to the THO logic. Data FIFO Half Full, and a latched version of
Data FIFO Full have been logically ORed with the jumper selectable THO condition available on the Trigger FIFO
child board. If the Data FIFO becomes half full during a readout, the THO output is driven true until the Data
FIFO becomes less than half full. If the Data FIFO becomes full during a readout, this error condition is latched
by the THO logic and the THO output is driven true until the Output Port Controller is reset.

9.5.4 Bug Fixes
Two bugs have been corrected in the PC4b modifications. The first involved skewing of the FASTBUS Data
Acknowledge (DK) signal. The FASTBUS specification dictates that the Master must delay the incoming DK
signal from the Slave by a small amount, to allow some setup time for the Slave Status (SS) lines. Previous
versions of FSCC’s did not have this delay, and it was noticed that there were rare but persistent problems with the
FSCC when used with certain slaves. The DK input of PC4b FSCC’s now provide this delay.

152 November 1, 1995

Appendix F - FSCC Version History

The second bug is related to the FASTBUS Short Timer time-out value. The Short Timer is the device which

times the response of the Slave or Ancillary Logic to the Master’'s assertion of certain control lines. Previous
version of the FSCC had a Short Timer time-out value of approximately 1.6 micro-seconds which is the minimum
allowed by the FASTBUS specification. It seems that some Ancillary Logic had Broadcast timers of
approximately the same value. This caused occasional time-out errors during Broadcast addressing cycles. The
time-out value of the Short Timer on the FSCC was increased to prevent this error.

During testing of certain front-end modules which featured Mega-Block mode readout, it was noticed that the
readout worked without errors until a certain number of modules were added to the Mega-Block chain. This
caused a Short Time-out error on the FSCC. This problem was traced to the way the Slaves released the AS-AK
lock after the Mega-Block readout was completed. The release of AK had to ripple back through all of the Slaves
before the AK line on the bus was lowered. Each of the Slaves added some delay, until the total AS(down) to
AK(down) time was greater than the newly lengthened Short Timer value on the FSCC. Since the current
FASTBUS specification is somewhat vague with regard to this condition, it was decided that lengthening the
FSCC’s Short Timer value even more was the most cost effective solution. The PC4b Short Timer value is
approximately 3 micro-seconds.

Novmber 1, 1995 153

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10. Appendix G - FSCC Auxiliary Output Port
Interface Cards

154 November 1, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

* Fermi National Accelerator Laboratory

10.1 FSCC- DARTAC INTERFACE
AUXILIARY BOARD

Version 3.1

Oscar Trevizo, Mark Bowden, Jeff Constable,
Geoff Cottrell, Rick Kwarciany, Dan Moline

October 4, 1995

Novmber 1, 1995 155

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.1.1 GENERAL INFORMATION

The FSCC-DARTAC Auxiliary Board is a custom version of the original FSCC-VDAS Auxiliary Board . It will
interface the FASTBUS Smart Crate Controller (FSCC) with the FIFO system of DART Data Acquisition System
compliant buffers, to allow data flow from the FSCC to the attached DAQ system. Connector requirements for the
DART system are provided for in this version.

Figure 19 shows how data flows from the FSCC to a DAQ buffer through the auxiliary board:

DATA
TTL FSCC
Level RS-485
FSCC DAQ DATA
Aux. BUFFER
Board
Citrl Ctrl

Figure19 DART DAQ System Block Diagram (Partial)

10.1.1.1 Board Purpose

The FSCC-DARTAC Auxiliary Board converts TTL level signals coming from the FSCC output port (FASTBUS
Auxiliary connector) to R$485 level signals. The FSCC output port is a 195 pin FASTBUS standard 3 row
connector containing 32 hits of data, and 6 control signals. Pin definitions of the connector are shown in this
document.

Two twisted pair ribbon cables connect data and control signals on the auxiliary board to the DAQ system. A 50
pin ribbon cable for the lower 16 bits of differential data, control signals, and a 34 pin cable for the upper 16 bits of
differential data.

10.1.1.2 Packaging

Thisis a standard FASTBUS auxiliary board. FASTBUS auxiliary boards are located in the auxiliary backplane
port of the crate. See IEEE STD 960-1986 section 14.

10.1.1.2.1 Physical Size

Physical dimensions of the board comply with FASTBUS auxiliary boards. See section 14 of IEEE STD 960-1986.

10.1.1.3 Power Requirements

Power is supplied by connection to the FSCC through the FSCC's FASTBUS Auxiliary connector. The board
requires +5 Volts @ 1.3 Amp.

156 November 1, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.1.1.4 Cooling Requirements

Cooling requirements comply with FASTBUS standards (see FASTBUS Sd section 13.3).

10.1.1.5 ICs Used

1. National Semiconductor chips DS96174 and DS96175, 16 pin Quad Differential Line Drivers, make the level
conversions between TTL and RS485. They meet atransmission rate of 10 Mbs. The following isalist of specs:

*Meets EIA Standard for RS485 and RS422A
*Monotonic Differential Output Switching
*Three-State Outputs

*Designed For Multiple Bus Transmission

«Common Mode Output Voltage Range: -7V to +12V
*Operates From Single +5V Supply

*Thermal Shutdown Protection

For more information see National Semiconductor Linear Data Book.

2. TTL 74F00 converts proper polarity for strobe signal. This gate also allows the delay path of the Strobe line to
be similar to the delay path for the data.

3. Lattice GAL22V10-15 PAL currently used for miscellaneous combinatorial logic.

10.1.1.6 Pin Configurations

The three connectors used are: a 195 pin 3 row connector from the FASTBUS auxiliary backplane, a 50 pin 3M
connector and a 34 pin 3M connector for DART buffers.

10.1.1.6.1 FASTBUS 195 Pin 3 row Backplane Connector
For standard auxiliary backplane connector see FSCC documentation.
Pins B16 through B47 hold data(0) through data(31) with B59 for DATA_OUTPUT_ENABLE.
Control pins are B14 for STROBE, B58 for WAIT, and B15 for End_Of_Record.

Driver enables are as follows: B59 for Data_Output Enable, B60 for Strobe_ Output Enable, and B8 for
End_Of_Record_Enable.

Power pins are: A12, A32, and C63 for -5.2V; A43, C12, and C53 for +5V; B65 for -2V; and A22, A53, A63, B64,
C22, C32, and C43 for GROUND.
10.1.1.6.2 50 Pin Connector
This connector contains data as follows:
Pinl has data(0), Pin2 has -data(0)
Pin3 has data(1), Pin4 has -data(1)

Pin5 has data(2), Pin6 has -data(2)
Pin7 has data(3), Pin8 has -data(3)

Novmber 1, 1995 157

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

Pin9 has data(4), Pin10 has -data(4)
Pinl11 has data(5), Pin12 has -data(5)
Pin13 has data(6), Pinl14 has -data(6)
Pin15 has data(7), Pinl6 has -data(7)
Pinl7 has data(8), Pin18 has -data(8)
Pin19 has data(9), Pin20 has -data(9)
Pin21 has data(10), Pin22 has -data(10)
Pin23 has data(11), Pin24 has -data(11)
Pin25 has data(12), Pin26 has -data(12)
Pin27 has data(13), Pin28 has -data(13)
Pin29 has data(14), Pin30 has -data(14)
Pin31 has data(15), Pin32 has -data(15)
Pin33 has strobe, Pin34 has -strobe
Pin35 is not used, Pin36 is not used
Pin37 has WAIT, Pin38 has -WAIT
Pin39is not used, Pin40 is not used
Pin41 has EOR, Pin42 has -EOR

Pin43 is not used, Pind4 is not used
Pind5 is not used, Pind6 is not used
Pin47 is not used, Pind8 is not used
Pin49 is not used, Pin50 is not used

10.1.1.6.3 VDAS 34 Pin Connector
Pinl has data(16), Pin2 has -data(16)

Pin3 has data(17), Pin4 has -data(17)
Pin5 has data(18), Pin6 has -data(18)

Pin31 has data(31), Pin32 has -data(31)

158

November 1, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.1.2 THEORY OF OPERATION AND OPERATING MODES

Each of eight DS96174 converts four bits of TTL level data to differential RS485 level data. One DS96174
converts the STROBE signal, to RS485 level. The DS96175 converts the WAIT R3485 level signal from the
DART buffer module to the TTL WAIT signa on the FSCC. The Strobe output of the FSCC is run through a gate
to alow its delay path to more closely match the delay path of the Data. Datais valid on the leading (falling) edge
of the RS-485 Strobe signal The 22V 10 PAL on the board was added to version 3.0 to allow more implementation
flexibility concerning the WAIT input, and also the EOR (a.k.a’s: EOE or EOB) output. The pal aso has a four
switch DIP switch connected to it to allow quick configuration changes in the field. For detailed operation of the
WAIT input logic, and of the EOR output logic see PAL equation listing at end of this document. Current DIP
switch definitions are listed in their own section of this document.

10.1.2.1 Basic Operation

The basic operation is better described by the timing diagram in section 2.11, however, a summary is provided:

» A 100ns clock drives a the 32-bit data register on the FSCC.

» STROBE from the FSCC rises ~40 nsecs. after data becomes valid.

» STROBE is inverted and delayed slightly. Data is valid on the falling edge.
*New data is presented on 100 nsecs cycles.

This process continues until the DAQ buffer asserts WAIT, or the entire event is output. During WAIT:
*The data register clock to stays LOW.

*STROBE to stay LOW (RS-485 data strobe remains high).
«Data does not change.

10.1.2.1.1 DIP Switch Settings

Function Switch 1
No Function X
Function Switch 2
FSCC WAIT Always False open
FSCC WAIT = RS-485 WAIT closed |*
Function Switch4 | Switch 3
No Function X | X

* = Default setting for DART System.

DIP Switch 1 has no function, and may be left in either position.
DIP Switch 2 allows the RS-485 WAIT control line to be either received or ignored by the FSCC.

DIP Switches 3 and 4 have no function and may be left in either position.

Novmber 1, 1995 159

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.1.2.1.2 Jumper Settings
The jumper block on the FSCC-DARTAC Aux. card has no function. The jumper may be in any position or
removed.

Table21 FSCC-DARTAC PartsList

Description Quan Stock # Manufact Man. # Price Cost/board
urer each
.1uF Ceramic, Dip Cap 14 1415- Sprague 923C25U104M05 $0.20 $2.80
3140 0B
100 Ohm, 8-pin, 4-resistor SIP 11 Bourns 4308-102-101 $0.20 $2.20
47uF 25V Polarized Capacitor 1 1425- $0.98 $0.98
1200
50ns Delay 1 Dallas DS1000-50 $3.98 $3.98
8-Pin SIP Socket 11 Samtec SS-108-G2 $0.85 $9.35
Circuit Board 1 (by $45.00 $45.00
contract)
FASTBUS AUX connector 1 AMP 534974-9 $27.00 $27.00
Miniature fuse 2 A 1 PICO 251.002 $0.75 $0.75
Right angle header, 34-pin 1 1435- 3M 3431-5302 $1.60 $1.60
7105
Right angle header, 50-pin 1 1435- 3M 3433-5302 $2.25 $2.25
7115
Quad 2-input Positive Nand 1 TI N74F00N $0.40 $0.40
Quad Differential Line Driver 10 National DS96174 $1.75 $17.50
Quad Differential Line Receiver 1 National DS96175 $1.60 $1.60
Transorb 1 ICTE-5 $1.24 $1.24
22 input, 10 output PAL 1 Lattice GAL22V10-15 $14.00 $14.00
4 switch DIP switch 1 $0.00
1K Ohm 1/8 Watt Resistor 4 $0.00
2x3 pin jumper block 1 $0.00
Miniature Spring Socket 2 AMP 2-331272-2 $0.23 $0.46
24-pin x 300Mil DIP socket 1 Samtec ICO-324-SGG $1.87 $1.87
Total $132.98

160 November 1, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.1.2.1.3 PAL Source Listing

nodul e auxcard
title ' DART auxcard WAIT, and EOR | ogic
Ri chard Kwarciany Fernilab 4/28/93

Made changes to neet DART Interface 3.11 spec.
" Add EOR CE equation
Elinmnate DIP switch setting for EOR source

" RK 6-14-95
auxcard devi ce ' p22v10’;
CLK PI'N 1; "ACO7
F'SWAI T PIN 2; "wait input from RS-485
I OPCECR PIN 3; "EOR from FSCC OPORT controller (AC09)
QUTEN PIN 4; "RS-485_Qutput Enable
STROBE PIN 5; "strobe from FSCC
SPAREQ PIN 6; "Spare input fromRS-485 (Fornerly Sequencer Busy)
SPARE1 PIN 7; "Spare input from RS-485
AC12 PIN 8; "spare input from FSCC OPORT sequencer
DI P1 PIN 9; "DIP switch EOR source sel
Dl P2 PI'N 10;"DIP switch WAIT sel
DI P3 PIN 11;"DIP switch EOR enable sel 0
DI P4 PI'N 13;"DIP switch EOR enable sel 1
AC02 PIN 14;"spare |/O from FSCC processor
ACO6 PIN 15;"spare |/O from FSCC processor
ACO5 PIN 16;"spare |/ O from FSCC processor
EOR_CE PIN 17;"ECR out put enable
I PROEOR PIN 18;"EOR from FSCC processor
I DEOR PI'N 19; "EOR out put to RS-485
SPARE2_COE PIN 20;"output enable for SPARE2 RS-485 out put
DEOR CE PIN 21;"output enable for EOR output to RS-485
SPARE2 PIN 22;"spare RS-485 output
FFWAI T PIN 23;"wait output to FSCC OPORT controller
equati ons

" Drive the EOR output using the input fromthe FSCC s OPORT controller.
DECR = OPCECR,

" Drive FSCC WAIT if BUFFER _BUSY is recieved
" or tie wait perminantly false by setting DIP2 to a one (switch open).
FWAI T = IDIP2 & SWAIT;

" EOR output is enabled by the FSCC s output port controller.
DEOR COE = EOR _CE;

" SPARE2 output is permnantly disabl ed.

SPARE2 CE = 0;
" SPARE2 is unused.
SPARE2 = 0;
END

Novmber 1, 1995 161

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

* Fermi National Accelerator Laboratory

10.2 FSCC-VDASAC INTERFACE (E791)
AUXILIARY BOARD

Version 3.0

Oscar A. Trevizo, Mark Bowden
Jeff Constable, Richard Kwarciany, Dan Moline, Geoff Cottrell

October 31, 1992

162 November 1, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.2.1 1.GENERAL INFORMATION

The FSCC-VDAS Auxiliary Board will interface the FASTBUS Smart Crate Controller (FSCC) with the
FIFO system of the Video Data Acquisition System (VDAYS) to allow data flow from the FSCC to the
VDAS-FIFO.

FSCC is a simple readout controller for low occupancy front-end modules that performs most basic
FASTBUS operations. VDAS, is amemory handling FIFO system with a 32-bit input port based on the
RS485 bus standard. It provides the mechanisms to store amounts of data as large as 176 MBytes at
speeds of 40 MBytes/sec in and 40 MBytes/sec out, simultaneously.

Figure 20 shows how data flows from the FSCC to the VDAS-FIFO through the auxiliary board:

DATA
TTL FSCC
Level VDAS
FSCC VDAS
AUX. FIFO
Board
Ctrl Ctrl

Figure20 VDASDAQ System Block Diagram (Partial)

Fermilab experiment E-791 is scheduled to use the FSCC-VDAS combination to collect data from fixed-
target experiments.

10.2.1.1 Board Purpose

The FSCC-VDAS Auxiliary Board converts TTL level signals coming from the FSCC output port to
R$485 level signals going into the VDAS input port. The FSCC output port is a 195 pin FASTBUS
standard 3 row connector containing 32 bits of data, STROBE, and WAIT control signals. The pin
definitions of the connector are shown in this document.

VDAS input port contains two connectors; a 64 pin ribbon connector for 32 bits of true and inverse data,
and a 10 pin connector for STROBE and WAIT control signals.

The auxiliary board will pass data to the VDAS system as long as no WAIT signal is generated by the

VDAS system. The VDAS system will send a WAIT signal to the auxiliary board in the event that a
FIFO "near full" condition occurs.

10.2.1.2 Application

The first application for this board is for Fermilab experiment E-791, Hadroproduction of Charm and
Beauty in the Tagged Photon Laboratory. The main objective of E-791 isto explore new ground in charm
and beauty physics. Fast front-end electronics (<20 us readout times) and fast data acquisition is required

Novmber 1, 1995 163

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

as part of the overall system for reconstructing a large number of eventsin E-791. For more information
about E-791 see the 1989 Fermilab Research Program Workbook page 95.

10.2.1.3 Packaging

This is a standard FASTBUS auxiliary board. FASTBUS auxiliary boards are located in the auxiliary
backplane port of the crate. See IEEE STD 960-1986 section 14.

10.2.1.3.1 Physical Size
Physical dimensions of the board comply with FASTBUS auxiliary boards. See section 14 of IEEE STD

960-1986. (Roughly 5" wide by 7" tall, and .093" thick)

10.2.1.4 Power Requirements

The card is powered by a connection to the FSCC through the FSCC’s Auxiliary connector. Total power
consumption is approximately 2.5 Watts on the +5Volt supply.

10.2.1.5 Cooling Requirements

Cooling regquirements comply with FASTBUS standards (see FASTBUS Sd section 13.3).

10.2.1.6 Inteqgrated Circuits Used

Fairchild chips pA96174 and pA96175, 16 pin Quad Differential Line Drivers, make the level
conversions between TTL and RS485. They meet a transmission rate of 10 Mbs. The following is a list
of specs:

*Meets EIA Standard for RS485 and RS422A
*Monotonic Differential Output Switching
*Three-State Outputs

*Designed For Multiple Bus Transmission

«Common Mode Output Voltage Range: -7V to +12V
*Operates From Single +5V Supply

*Thermal Shutdown Protection

For more information see Fairchild Linear Data Book 1987 page 9-87.
2. Delay IC from Dallas Semiconductor DS 1000-50 used to make a "one-shot" for the strobe signal.

3: TTL 74F00 converts proper polarity for strobe signal.

10.2.1.7 Pin Configurations

The three connectors used are: a 195 pin 3 row connector from the FASTBUS auxiliary backplane, a 64
pin connector and a 10 pin connector for VDAS.

164 November 1, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.2.1.7.1 FASTBUS 195 Pin 3 row Backplane Connector
For standard auxiliary backplane connector see FSCC documentation section 1.32.
Pins B16 through B42 hold data(0) through data(31) with B59 for OUTPUT-ENABLE.
Control pinsare B14 for STROBE*, and B56 for WAIT.

Power pinsare: A12, A32, and C63 for -5.2V; A43, C12, and C53 for +5V; B65 for -2V; and A20, A53,
AB3, B64, C22, C32, and C44 for GROUND.

10.2.1.7.2 VDAS 64 Pin Connector
This connector contains data as follows:
Pinl has -data(31), Pin2 has +data(31)

Pin3 has -data(30), Pin4 has +data(30)
Pin5 has -data(29), Pin6 has +data(29)

Pin61 has -data(1), Pin62 has +data(1)
Pin63 has -data(0), Pin64 has +data(0)
10.2.1.7.3 VDAS 10 Pin Connector

Pin10 has +STROBE
Pin9 has -STROBE

Pin6 has WAIT ("near full")
Pin5 has -WAIT.

Novmber 1, 1995 165

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.2.2 THEORY OF OPERATION AND OPERATING MODES

The board contains nine pA96174, one n96175, one 195 FASTBUS backplane connector, one 64 pin
ribbon connector, and one 10 pin connector. Each of eight pA96174 convert four bits of TTL level data
to differential RS485 level data. One PA96174 converts the STROBE signal to RS485 levels. The
HA96175 converts the "near full" RS485 level signal from VDAS to the WAIT TTL signal in FSCC. The
delay line, and 74F00 is used to generate a 20 ns low going pulse on the VDAS Strobe line when a rising
edge is received on the Strobe line from the FSCC.

DATA BUS
HA96174 HA96174
| 64 Pin
N > — Ribbon
—] r . 4> Connector
195 Pin HA96174 HA96174 to VDAS
3 Row Modple
Auxiliary || ||
Connecto) >
from FSCC
HA96174 HA96174
10 Pin SF
. HA96174 UA96174
to VDAS
\,_ g>
>] 4 [for STROBE an
] | \ WAIT (near full}
HA96174 PA96175

CONTROL BUS

Figure2l FSCC-VDASAC Block Diagram

166 November 1, 1995

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.2.2.1 Basic Operation

The basic operation is better described by the timing diagram in section 2.11. The basic operationiis:

» A 100ns clock drives a the 32-bit data register on the FSCC.

» STROBE from the FSCC rises 40 nsecs. after data becomes valid.

*The one-shot circuit causes the RS-485 data strobe to go low 6 ns after STROBE rising edge.

*The one-shot circuit times out after 20, 30, or 40 ns, (jumper selectable) and the RS-485 data
strobe goes high. Data is valid on this edge.

*new data is presented on 100 nsecs cycles.

This process continues until VDAS-FIFO is "near full." At "near full* (with memory storage space left
for about eight more words) WAIT goes HIGH, causing:

» The data register clock to stay LOW.
* STROBE to stay LOW (RS-485 data strobe remains high).
« Data does not change.

10.2.2.2 Timing Diagram

In the following timing diagram the FSCC's 50 ns internal clock drives a sequencer which drives the data
register clock, and the STROBE line. The time delay between this internal clock and its outputs
(STROBE and data register clock) is about 20 nsecs. The time delay between the data register clock and

data valid is about 9 nsecs.
50ns

- Y

data

registed | |
clock
STROBE |

I e
| L
reaE || L] L] L] LI

Strobe
DATA X ><
WAIT | |

Figure22 FSCC-VDASAC Timing Diagram

>
>

X

Novmber 1, 1995 167

Appendix G - FSCC-DARTAC Output Port Auxiliary Board

10.2.3 PARTSLIST

Table22 FSCC-VDASAC Output Port Auxiliary Board PartsList

Description Quan Stock # Manufact Man. # Price Cost/board
urer each
.1uF Ceramic, Dip Cap 12 1415- Sprague 923C25U104M05 $0.20 $2.40
3140 0B
100 Ohm, 8-pin, 4-resistor SIP 10 Bourns 4308-102-101 $0.20 $2.00
47uF 25V Polarized Capacitor 1 1425- $0.98 $0.98
1200
50ns Delay 1 Dallas DS1000-50 $3.98 $3.98
8-Pin SIP Socket 10 Samtec SS-108-G2 $0.85 $8.50
Circuit Board 1 (by $45.00 $45.00
contract)
FASTBUS AUX connector 1 AMP 534974-9 $27.00 $27.00
Miniature fuse 2 A 1 PICO 251.002 $0.75 $0.75
Right angle header, 64-pin 1 3M 1435-7120 $3.00 $3.00
Right angle header, 10-pin 1 3M 1435-7090 $1.25 $1.25
Quad 2-input Positive Nand 1 TI N74F00N $0.40 $0.40
Quad Differential Line Driver 9 Fairchild uA96174 $1.75 $15.75
Quad Differential Line Receiver 1 Fairchild UA96175 $1.60 $1.60
Transorb 1 ICTE-5 $1.24 $1.24
2x3 pin jumper block 1 $0.00
Miniature Spring Socket 2 AMP 2-331272-2 $0.23 $0.46
Totd $114.31

168

November 1, 1995

